Bournemouth University undertakes to encourage the recognition, protection and exploitation of intellectual property rights generated by participants in this programme, to the benefit, as appropriate, of students, staff, industrial/other third parties/partners and the university.
## CONTENTS

1. BASIC FRAMEWORK / PROGRAMME DATA 4
2. AIMS OF THE DOCUMENT 6
3. PROGRESSION ROUTES 6
4. ACADEMIC AND PROFESSIONAL CONTEXTS 6
5. AIMS OF THE FRAMEWORK / PROGRAMMES 8
6. OVERVIEW OF THE FRAMEWORK STRUCTURE AND CURRICULUM 11
7. INTENDED LEARNING OUTCOMES 14
8. LEARNING AND TEACHING STRATEGIES AND METHODS 19
9. ASSESSMENT STRATEGIES AND METHODS 19
10. PROGRAMME SKILLS MATRICES 20
11. WORK-BASED LEARNING (WBL)/PLACEMENTS ELEMENTS 28
12. PROGRAMME DIAGRAMS 28
13. ADMISSIONS REGULATIONS 35
14. ASSESSMENT REGULATIONS 35
15. PROGRAMME PROFILES 36
1. BASIC FRAMEWORK / PROGRAMME DATA

Originating institution(s) Bournemouth University
Award(s) and title(s) BSc (Hons) Business Information Technology
BSc (Hons) Computer Networks
BSc (Hons) Computing
BSc (Hons) Forensic Computing & Security
BSc (Hons) Information Technology Management
BSc (Hons) Software Engineering
Dip HE Business Information Technology
Dip HE Computing
Dip HE Forensic Computing & Security
Cert HE Computing

UCAS Programme Code(s) (where applicable and if known) Business Information Technology – G503
Computing – G610
Forensic Computing and Security - G550
Information Technology Management - G506
Computers and Networks – I120
Software Engineering – G602

HESA JACS (Joint Academic Coding System) Code(s) per programme/pathway Business Information Technology – I161, I260
Computing – I100
Forensic Computing and Security – I990
Information Technology Management – I230, N213, I300
Computers and Networks – I120
Software Engineering – I300, I310

External reference points(s) • The Quality Assurance Agency for Higher Education, 2011.
UK Quality Code for Higher Education.
• Chapter A1: The National Level (incorporating the Framework for Higher Qualifications (FHEQ) in England, Wales and Northern Ireland)
• Chapter A2: The Subject and Qualification Level (incorporating the Subject benchmark statements for Computing (2007))
• BCS – The Chartered Institute for IT

Professional, Statutory and Regulatory Body (PSRB) links BCS (British Computing Society) accreditation
Place(s) of delivery Bournemouth University
Mode(s) of delivery Full-time sandwich (Full-time without placement)
Credit structure 120 C Level credits (60 ECTS)
120 I Level credits (60 ECTS)
120 H Level credits (60 ECTS)
Duration 4 years (3 years without placement)
Date of original approval(s) June 2008
Date of first intake September 2016
Expected Start Dates September
Student numbers Minimum: 150
Optimum: 170
Maximum: 200
Placements A minimum of 30 weeks
Partner(s) and model(s) N/A
November 2012
E1213020: Approval of Articulation Arrangement with Bournemouth University International College (Kaplan) for Level C entry
E1213195: Approval of Recognition Agreement with Bournemouth Business School International (BBSI) – recognition without advanced standing:
Both E1213020 and E1213195 are for the following courses:
BSc Business Information Technology
BSc Computer Networks
BSc Computing
BSc Forensic Computing and Security
BSc Information Technology Management
BSc Software Engineering

August 2013:
DEC 1213 14: Updated Industrial/Freelance Placement unit included in Unit Specification

November 2013
E1314010 E1314011: Approval of Recognition Agreement with Beijing Jiaotong University (BJTU) and E1314012 E1314013 Approval of Recognition Agreement with Xidian University – recognition with advanced standing:
BSc Business Information Technology
BSc Information Technology Management
BSc Computing
BSc Software Engineering
BSc Computer Networks

July 2014:
DEC 1314 07: Level H software Systems Modelling – change to assessment weighting from 70% exam/30% coursework to 100% coursework. This modification will apply to Level H students from September 2015.

April 2015
Scitech 1415 10 Business Development and Enterprise – change to assessment weighting from 70% coursework 30% exam to 100% coursework. This modification will apply to final year student from September 2015
Scitech 1415 11 Business and Professional Issues unit. Change to assessment weightings from 70/30 to 100% coursework. This modification will apply to first year students from September 2015

July 2015 FST 1516 04 Changes to assessment weighing for Network Configuration Management unit
Scitech 1415 20 Change to summative assessment for Level 6 Human Factors in Computing Systems unit.
Scitech 1415 24 Change in ILOs and summative assessment wording for Web Technology Integration unit
Scitech 1415 25 Level 6 Security by Design to replace Cyber Crime unit

November 2015
FST 1516 04 Changes to assessment weighting for Network Configuration Management unit

June 2016
FST 1516 13, approved 31/05/2016. Previously version 2.7-0916
FST 1516 14, approved 31/05/2016. Previously version 2.8-0916
E1617002, approved 18/11/16.

BU 1617 01, approved 24/02/2016. Previously version v2.9-0916
FST 1617 09, approved 8 February 2017; previously version 2.10-0917
2. AIMS OF THE DOCUMENT

The aims of this document are to:

- define the structure of the ‘Computing Undergraduate Framework’
- define the programme degree names and grouping of programmes in the framework
- specify a common core of learning and group paths that underpin the programmes
- specify overall programme outcomes for each programme
- specify the level I outcomes for each group path
- specify the level C outcomes for all programmes
- make or give reference to regulations governing all the programmes in the framework
- present a programme structure diagram for each programme including the final and intermediate award names
- present matrices for each programme to show linkages between the programme and outcomes and the framework structure of units
- give a programme profile document for each programme (to be supplied)

3. PROGRESSION ROUTES

The following Internal Progression Routes apply:

- Students who have successfully completed the Bournemouth & Poole College FdSc Business Computing with an overall mark of 60% will be eligible to apply for entry with advanced standing to the BSc Business Information Technology, BSc Information Technology Management, BSc Software Engineering or BSc Computing programmes and credited with 120 credits at Level C and 120 credits at Level I.
- Students who have successfully completed the Bournemouth & Poole College FdSc Computing with Networking with an overall mark of 60% will be eligible to apply for entry with advanced standing to the BSc Computer Networks, BSc Information Technology Management, BSc Software Engineering and BSc Computing programmes and credited with 120 credits at Level C and 120 credits at Level I.

4. ACADEMIC AND PROFESSIONAL CONTEXTS

Computing (Software Systems) at Bournemouth has a history which has always focussed on Computing as a profession, rather than a purely academic pursuit, and the balance of theory and practice has been a key concern. We have long had a very important relationship with the BCS (British Computer Society), its accreditation of our courses and membership opportunities for our graduates. The QAA Computing Benchmark has likewise been a very important external context within which our courses are set, since its inception in 2000, and we have updated our courses in the light of the 2007 Benchmark Statement. Our research and relationships with industry – that often derive from our research activity – provide key inputs to our thinking about computing education and the design and delivery of our courses, and qualities of our graduates.

Hence, Computing education at Bournemouth has always been strongly technically based and it has always been a principle that our graduates should be able to develop software and other IT systems, not simply to design them or analyse the need for them.
Similarly, our research tends to be applied in nature rather than theoretical, and our research foci reflect our interest in Computing as an industrial practice, both in approach and content. Our major research themes are within Software Systems (including Software Engineering) and Computational Intelligence (with a focus on classification and prediction), and work is centred on the notion of research and development leading to software systems that are fit for purpose and capable of tackling important contemporary challenges within a range of business and engineering sectors.

As such, our work tends to be of an applied nature, driven by the needs of the UK and European businesses with which we collaborate. We have a history of positive involvements in these much more industry aligned European projects, with FP6 (STREP) projects in model driven development and fraud detection, successful Marie Curie projects, and latterly the Major EC funded project INFER, with BU as co-ordinator, worth approx 900K to BU, which utilises both our computational intelligence and software engineering expertise.

Computing research at Bournemouth has continued to grow and improve over recent years. In RAE 2008, we saw a strong improvement in our rankings where, dependent on which particular tables are consulted, we moved up between 17 and 21 places, and although our overall scores were modest compared to many, we did see some research rated as 4*, with 35% at 3* or above, and 85% 2* or above, indicating that work of quality was carried out here.

Since RAE 2008 we have sought to grow our research further, whilst still maintaining a close alignment with teaching, enterprise and professional practice. We have invested QR money and further institutional funds in new lectureships, bringing new energy and impetus to the group. For the coming REF, for which we have recently undertaken a mock exercise, we will have a far greater number of research active staff, more bidding and more bid income, (including our recent, increased enterprise activity and further successful knowledge transfer partnerships) and, we believe, better quality of research outputs.

Hence, while we recognise our modest beginnings we believe that we have a strong trajectory in terms of research and enterprise. In addition, we are committed to the alignment of research with teaching, so that students will benefit directly from the expertise that exposure to research and to commercial and industrial environments brings.

Our courses are informed by relevant and current research and enterprise activity, and by the needs of the professions. Professionally focussed courses such as Business Information Technology and Software Engineering have been taught (in various incarnations) for nearly two decades, and are accredited by our professional body, the BCS (British Computer Society). We continue to review and refresh our provision to ensure its currency and value, and our current courses, and those proposed herein still relate strongly to industrial practice, and reflect the breadth of the Computing industry. Our educational programmes are technologically rich – our graduates are able to create artefacts of quality and value, taking proper account of client needs, selecting and applying appropriate methods, and reflecting on their work. Our courses emphasise coverage of fundamental issues and core skills (particularly at levels C and I), and then allow students to specialise at level H.

Considered against the BCS Accreditation Guidelines criterion that “…not more than one-third of the material in an accredited programme may normally lie outside the scope of the QAA Computing benchmark…” our courses are between 90% and 100% inside that scope.

These Framework courses are designed to be very well aligned with the QAA Computing Benchmark. Particular examples refer to:

- section 2.6, its bulleted list and its principle “…themes that ensure students are equipped to contribute to the development of major components of computer systems in a manner that ensures they are fit for the purpose for which they were originally intended.”
- section 2.9 ethos “…three key ideas which constitute a certain ethos…”: “i) the concept of computational thinking…”, “ii) the computing system…” and “iii) …balance of practice and theory…”.
We could similarly draw attention to specifics for other parts of section 2 and sections 3, 4, 5 and 6.

5. AIMS OF THE FRAMEWORK and PROGRAMME(S)

FRAMEWORK AIMS - Curriculum

The overall aim of the Computing Framework curriculum is to produce highly employable graduates who combine a wide range of knowledge and skills, reflecting the breadth of the profession, with in-depth knowledge and skills in their specialised areas. They will be critical thinkers and independent learners, able to solve complex IT-related problems individually and in teams, and to critically evaluate these solutions.

FRAMEWORK AIMS – Structure

The main aim of the Framework structure is to enable students to defer their final choice of degree title. This allows students to make an informed choice, taking into account their individual areas of interest, subject strengths and weaknesses, placement experiences and career aspirations. This has proved extremely popular with applicants and continuation students alike.

Deferred choice of degree title in the Computing Framework is achieved by:

- Common Level C
- Partial specialisation at Level I
- Final choice of degree title in the Spring of the Placement Year (Year 3).

PROGRAMME AIMS

BSc (Hons) Business Information Technology

Business IT at Bournemouth is taken to be the application of computing for the improvement of business process. This course covers business, but with the emphasis on building or applying IT applications, and on producing students with technical skills and a business appreciation. By studying the BIT course, students will come to understand both the business environment in which computer systems operate and the technical aspects of how to design, build and select IT applications to meet business needs.

The Business Information Technology degree title has been running successfully in various incarnations for over 15 years, with continual updates that reflect the technological rate of change. Within the national context, our concept of BIT is that of a heavily technical course; the content ratio is around 80% technical and 20% business. This gives students a solid underpinning of technical ability, which then allows them to design, build or select the technology to solve business problems. Our students are regarded highly by placement companies and graduate employers.

The course has a second year Business for IT unit, which focuses specifically on the business environment. In the final year, from Academic Year 2015-16 onwards, students focus on business development and enterprise (from both own business start-up and corporate perspectives) and on the application of advanced data management techniques, such as data mining, that enhance the value of its data to a business. For Academic Year 2014-15 only, students may choose to study any three of the (20 credit) Level H units that are offered on the Computing Framework, within the constraints of having appropriate underpinning, and not matching the combination of units for another existing title.

BSc (Hons) Computer Networks

The rationale for the programme is the in-depth learning of the theoretical principles and technical aspects of network system configuration and management. Throughout the programme, emphasis is placed on detailed network design knowledge and implementation choices.
Topics covered include the setting up of optimum network infrastructure configurations, including management of redundancy and scalability, and active management of network systems including optimisation of behaviour and performance of key intermediary devices, in a variety of network designs and organisational scenarios.

Graduates will learn the principles and practices of advanced networks that will allow them to understand and design current and future networks. They will learn to set up, manage and administer large organisations’ networks using lab and simulation based exercises in well equipped laboratories.

Graduates of the programme will be able to put their technical knowledge into a modern business or organisational setting including the legal and ethical aspects of computer network management, such as security and issues of disaster recovery.

**BSc (Hons) Computing**

The BSc (Hons) Computing title is for students who do not want to specialise in one particular area, as offered by the other titles within the Computing Framework, but instead would prefer to cover a broader range of computing-related topics, in eclectic combination.

To this end, students may choose to study any three of the (20 credit) Level H units that are offered on the Computing Framework, within the constraints of having appropriate underpinning, and not matching the combination of units for another existing title. Hence, this course appeals to those who find the general field of Computing (i.e. not its specialist forms) to be of continuing interest, and who wish to equip themselves with a broader and more general graduate profile.

**BSc (Hons) Forensic Computing & Security**

Forensics and security as a specialist course within the Computing Framework represented a new initiative at Bournemouth, and has proved popular with applicants and continuation students. Classifying this one course as being in a group allows for expansion.

This course is offered to provide for those particularly interested in a career involving computer forensics and/or computer security. The course is based on the premise that computer forensics is an expanding field, covering not only computers but other digital artifacts such as car satellite navigation systems. Graduates have strengths in law particularly as it applies to forensics, collection and custody of evidence, investigation and analysis of data both in storage and ‘in-flight’ (e.g. in networks).

Since the inception of the course, computer security has grown enormously as a goal and endeavour of both businesses and governments as well as an academic discipline. This is reflected in the increased coverage of security at all levels within the whole framework.

Despite the focused title and content, much of the course is common to other pathways, and an important aim is to provide a broad education in the area of computing and IT, to provide graduates with sound underpinning and career flexibility.

**BSc (Hons) Information Technology Management**

The Information Technology Management course examines and builds on the business and management aspects of the first two years of the framework. It focuses on developing IT experts for business who understand how IT can impact upon and improve business processes, and how to manage the use of IT. This course is offered to provide for those particularly interested in a career involving not only business and business process, but also the management of IT including strategic and operational management issues. Hence, graduates would typically be working as managers or in the interface between IT and clients, rather than as developers.

Therefore, graduates will develop an in-depth understanding of the business environment; be able to specify systems which will meet the business needs of clients and to manage the
requirements phase; and understand the issues that face IT managers and the techniques available for their resolution. **BSc (Hons) Software Engineering**

Students studying for the BSc (Hons) Software Engineering title will examine in depth the rigorous methods, techniques and tools used in the development of large and/or highly complex software systems, especially those where software quality is at a premium, for example, systems of a safety-critical nature. To this end, students will develop a rigorous approach to a number of key aspects of software engineering, notably those which have the greatest impact on the success (or otherwise) of the software project.

Hence, the course will focus attention on the following: accurate modelling of software systems for requirement and design (including coverage of model driven approaches to software development and software product lines) and software quality and testing.
6. OVERVIEW OF FRAMEWORK STRUCTURE AND CURRICULUM

The units comprising the common Level C are focused on providing a broad coverage of topics that any well-educated IT professional should have knowledge of. These are:

- Business & Professional Issues
- Computers & Networks
- Programming
- Relational Databases
- Systems Analysis & Design
- User-centred Web Development

Partial specialisation at Level I is achieved by grouping students into one of three Level I "routes", as below:

- **Business IT route**
  (leading to BSc (Hons) Business Information Technology and BSc (Hons) Information Technology Management titles)
- **Computing route**
  (leading to BSc (Hons) Computer Networks, BSc (Hons) Computing and BSc (Hons) Software Engineering titles)
- **Forensics/Security route**
  (leading to BSc (Hons) Forensic Computing & Security title)

Thus students are not at this stage choosing their final degree titles (with the exception of Forensic Computing & Security) but are choosing between broad areas of specialisation.

The three routes share a number of common units, taken by all students. Each route has one or more "signature" units, taken by students on that route only. There are also a number of optional units – these may be mandatory for some routes and, in various combinations, provide options for other routes.

*Table 1* below shows the units taken by students at Level I as they progress from the common Level C, through their chosen Level I route involving partial specialisation, to their final choice of degree title.
Table 1 - LEVEL I ROUTES and UNITS with the DEGREE TITLES they lead to

**Unit Types:**  
S – Route-specific “signature” units  
C – Core units studied by all students  
O - Optional units  
C/O – Units that are core for some routes and optional on other routes

<table>
<thead>
<tr>
<th>Unit Type</th>
<th>UNITS</th>
<th>ROUTE NAMES and the DEGREE TITLES they lead to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Business IT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BIT, ITM</td>
</tr>
<tr>
<td>S</td>
<td>Business for IT</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Network &amp; Software Engineering</td>
<td>X</td>
</tr>
<tr>
<td>S</td>
<td>Digital Forensics</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Ethical Hacking &amp; Countermeasures</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Infrastructure Strategy</td>
<td>X</td>
</tr>
<tr>
<td>C</td>
<td>Project Management &amp; Teamworking</td>
<td>X</td>
</tr>
<tr>
<td>C</td>
<td>Systems Design</td>
<td>X</td>
</tr>
<tr>
<td>C/O</td>
<td>Data Management</td>
<td>X</td>
</tr>
<tr>
<td>O</td>
<td>Application Programming</td>
<td>X</td>
</tr>
<tr>
<td>O</td>
<td>Web Programming</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>Web Technology Integration</td>
<td></td>
</tr>
</tbody>
</table>

**COMMON LEVEL C UNITS (all routes and programmes)**

<table>
<thead>
<tr>
<th>Business &amp; Professional Issues</th>
<th>Relational Databases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computers &amp; Networks</td>
<td>Systems Analysis &amp; Design</td>
</tr>
<tr>
<td>Programming</td>
<td>User-centred Web Development</td>
</tr>
</tbody>
</table>
At Level H, each degree title (with the exception of Computing) mandates two 20 credit core taught units and gives students a choice of a third 20 credit unit from any of the taught units offered at Level H. The Computing degree title allows a free choice of three 20 credit taught units from any of the units offered at Level H, provided that this choice does not include both units of a “core pair” of units from another degree title.

All Level H students undertake a 60 credit Individual Project unit that is specific to their degree title.

Table 2 – PROGRAMME TITLES and LEVEL H UNITS (core units for a title shown by C)

<table>
<thead>
<tr>
<th>LEVEL I ROUTES leading to the programme titles</th>
<th>PROGRAMME TITLES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Business IT</td>
</tr>
<tr>
<td>LEVEL H TAUGHT UNITS (20 credits) that are core for a programme</td>
<td></td>
</tr>
<tr>
<td>Advanced Networks</td>
<td>C</td>
</tr>
<tr>
<td>Business Development &amp; Enterprise</td>
<td>C (Note 1)</td>
</tr>
<tr>
<td>Business Processes &amp; Requirements</td>
<td>C</td>
</tr>
<tr>
<td>Security by Design</td>
<td>C</td>
</tr>
<tr>
<td>Data Mining</td>
<td>C (Note 1)</td>
</tr>
<tr>
<td>Information Assurance</td>
<td>C</td>
</tr>
<tr>
<td>Management in Computing</td>
<td>C</td>
</tr>
<tr>
<td>Network Configuration Management</td>
<td>C</td>
</tr>
<tr>
<td>Software Quality &amp; Testing</td>
<td>C</td>
</tr>
<tr>
<td>Software Systems Modelling</td>
<td>C</td>
</tr>
<tr>
<td>OPTIONAL LEVEL H TAUGHT UNITS (20 credits) that are not core for any programme</td>
<td></td>
</tr>
<tr>
<td>Advanced Development *</td>
<td></td>
</tr>
<tr>
<td>Machine Intelligence for Business Decision Making *</td>
<td></td>
</tr>
<tr>
<td>Human Factors in Computing Systems*</td>
<td></td>
</tr>
<tr>
<td>Ubiquitous &amp; Pervasive Computing Systems*</td>
<td></td>
</tr>
<tr>
<td>Web Information Systems *</td>
<td></td>
</tr>
</tbody>
</table>
| INDIVIDUAL PROJECT (60 credits)               | C                | C         | C                | C | C

NB. Units marked with an asterisk may not run in any particular year, depending on level of student interest and availability of resources.

Note 1. These units are compulsory for Academic Years 2015-16 onwards. In Academic Year 2014-15 only, there are no compulsory units apart from the Project.
7. INTENDED LEARNING OUTCOMES

INTENDED PROGRAMME and LEVEL H OUTCOMES

Common Programme/Level H Outcomes (B, C and D)

B - Intellectual Skills
   B1  Reason critically,
   B2  Demonstrate independent thought,
   B3  Analyse, interpret, synthesise and evaluate information,
   B4  Identify and solve problems,
   B5  Select and apply appropriate design methods to the solution of problems,
   B6  Evaluate resource requirements of alternative solutions.

C – Practical Skills
   C1  Retrieve, select and evaluate information from a variety of sources,
   C2  Formulate a set of requirements for an IT solution,
   C3  Design a solution to an IT problem,
   C4  Implement a solution to an IT problem,
   C5  Evaluate an IT system,
   C6  Plan, monitor and evaluate the progress of an IT project.

D – Transferable Skills
   D1  Structure and communicate ideas effectively both orally and in writing,
   D2  Learn independently in complicated contexts,
   D3  Work professionally as an individual to develop creative solutions to problems,
   D4  Work professionally in teams to develop creative solutions to problems.

Programme/Level H Outcomes for A – Subject Knowledge and Understanding

BSc (Hons) Business Information Technology  [For Academic Year 2015-16 onwards]
   A1  Business planning and the management of innovative solutions for IT,
   A2  Principles and techniques of data mining,
   A3  A specialist subject of the student’s choice in an area offered by the Framework at Level H,
   A4  The business context in which IT solutions to business problems are developed and evaluated,
   A5  The development of software or other IT solutions to business and other problems,
   A6  The professional, legal & ethical responsibilities of computing personnel within the organisational, technical and global contexts in which computing is applied.

BSc (Hons) Business Information Technology  [For Academic Year 2014-15 only]
   A1-3  Three specialist subjects of the student’s choice in areas offered within the framework at Level H,
   A4  The business context in which IT solutions to business problems are developed and evaluated,
   A5  The development of software or other IT solutions to business and other problems,
   A6  The professional, legal & ethical responsibilities of computing personnel within the organisational, technical and global contexts in which computing is applied.
**BSc (Hons) Computer Networks**
A1  Principles of network communication systems,
A2  Configuration and management of network systems,
A3  A specialist subject of the student’s choice in an area offered by the Framework at Level H,
A4  A rigorous engineering approach to investigating and solving network problems,
A5  The development of software or other IT solutions to business and other problems,
A6  The professional, legal & ethical responsibilities of computing personnel within the organisational, technical, and global contexts in which computing is applied.

**BSc (Hons) Computing**
A1-3 Three specialist subjects of the student’s choice in areas offered within the framework at Level H,
A4  A rigorous engineering approach to investigating and solving computing problems,
A5  The development of software or other IT solutions to business and other problems,
A6  The professional, legal & ethical responsibilities of computing personnel within the organisational, technical and global contexts in which computing is applied.

**BSc (Hons) Forensic Computing & Security**
A1  Information assurance and cyber security,
A2  Digital forensic science and governance,
A3  A specialist subject of the student’s choice in an area offered by the Framework at Level H,
A4  How forensic and ethical hacking processes can be used to support information security,
A5  The development of software or other IT solutions to business and other problems,
A6  The professional, legal & ethical responsibilities of computing personnel within the organisational, technical and global contexts in which computing is applied.

**BSc (Hons) Information Technology Management**
A1  Management principles, techniques, and methods, for IT in business,
A2  Business processes and IT requirements,
A3  A specialist subject of the student’s choice in an area offered by the Framework at Level H,
A4  The business context in which IT solutions to business problems are developed and evaluated,
A5  The development of software or other IT solutions to business and other problems,
A6  The professional, legal & ethical responsibilities of computing personnel within the organisational, technical and global contexts in which computing is applied.

**BSc (Hons) Software Engineering**
A1  Modelling of software systems,
A2  Software quality and testing,
A3  A specialist subject of the student’s choice in an area offered by the Framework at Level H,
A4  A rigorous engineering approach to investigating and solving software problems,
A5  The development of software or other IT solutions to business and other problems,
A6  The professional, legal & ethical responsibilities of computing personnel within the organisational, technical and global contexts in which computing is applied.
INTENDED LEVEL I / Dip HE OUTCOMES

Level I involves partial specialisation. Students choose between one of three Level I groupings or routes, as below:

- **Business IT route** (leading to BSc (Hons) Business Information Technology and BSc (Hons) Information Technology titles)
- **Computing route** (leading to BSc (Hons) Computer Networks, BSc (Hons) Computing and BSc (Hons) Software Engineering titles)
- **Forensics/Security route** (leading to BSc (Hons) Forensic Computing & Security title)

All three routes have common outcomes for Intellectual Skills (B) and Transferable Skills (D) and broadly common Subject Knowledge and Understanding (A) and Practical Skill (C), due to the common core units and common set of non-route specific optional units offered at Level I. These are presented first under the heading **Common Level I / Dip HE Outcomes** below.

For Subject Knowledge and Understanding (A) and Practical Skills (C), the three routes have some route-specific outcomes. So these are presented separately under the heading **Level I / Dip HE Outcomes by Level I route**.

**Common Level I / Dip HE Outcomes**

A – Subject Knowledge and Understanding

- **A1** The different platforms on which IT systems operate and the importance of security,
- **A2** The principles and techniques for specifying and designing IT systems and their interfaces,
- **A3** The principles and techniques of project management and of working professionally and ethically in teams,
- **A4** The principles and techniques of developing IT applications to provide solutions to problems of intermediate complexity.

B – Intellectual Skills

- **B1** Apply appropriate analysis, design and development concepts to problems of intermediate complexity, with minimal guidance,
- **B2** Analyse processes and problems, and specify, design and evaluate appropriate solutions,
- **B3** Investigate technologies and approaches systematically and show how they can be used to solve problems,
- **B4** Understand the factors that affect how people work in teams.

C – Practical Skills

- **C1** Select, apply and evaluate appropriate models and techniques in the design and development of applications,
- **C2** Select appropriate platforms and security measures for different IT systems,
- **C3** Specify, design and evaluate IT solutions to problems of intermediate complexity,
- **C4** Use computer programs or development tools to build IT systems to provide solutions to problems of intermediate complexity.

D – Transferable Skills

- **D1** Organise and use ideas to communicate orally and in writing,
- **D2** Learn independently in contexts of intermediate complexity,
- **D3** Work as an individual to seek solutions to problems, with minimal guidance,
- **D4** Work ethically in teams to seek solutions to problems, with minimal guidance.
Route-specific Level I / Dip HE Outcomes

**Business IT route** (BIT and ITM titles)

A – Subject Knowledge and Understanding
   A6 The business, financial and social context in which IT systems are initiated, developed and used.

C – Practical Skills
   C5 Select and apply appropriate business models,
   C6 Work in teams to manage and monitor business IT projects of intermediate size and complexity.

**Computing route** (CN, Comp and SE titles)

A – Subject Knowledge and Understanding
   A6 The principles and techniques involved in applying a rigorous, engineering approach to the development of networked and software systems, and to their interrelationship.

C – Practical Skills
   C5 Apply engineering principles and techniques to the specification, design, development and evaluation of networked and software systems,
   C6 Work in teams to manage and monitor networking and/or software projects of intermediate size and complexity.

**Forensics/Security route** (FC&S title)

A – Subject Knowledge and Understanding
   A6 The principles and techniques of computer forensic science and digital security.

C – Practical Skills
   C5 Forensically capture and analyse data held on digital devices,
   C6 Plan and conduct a simple penetration test on digital data,
   C7 Work in teams to manage and monitor forensic investigation projects of intermediate size and complexity.

**INTENDED LEVEL C / CERT HE OUTCOMES**

Level C is common to all programmes.

A – Subject Knowledge and Understanding
   A1 Basic principles of programming using one of the major programming languages
   A2 Principles and techniques of database design and development,
   A3 Principles and techniques of systems analysis and design,
   A4 Computer, network and security infrastructure,
   A5 The principles and techniques of designing and developing usable Web applications,
   A6 The business context in which computing professionals work and their professional and ethical responsibilities.

B – Intellectual Skills
   B1 Apply analysis, design and development concepts with guidance, using given principles,
   B2 Analyse small well-defined scenarios and design, and implement and test appropriate solutions,
   B3 Analyse, categorise and interpret data and information,
   B4 Utilise analyses to plan and develop further investigations.
C – Practical Skills
   C1 Write computer programs to solve simple problems,
   C2 Design and implement databases using a query language,
   C3 Set up and configure a simple system (a computer or small network),
   C4 Design and build simple web applications using a markup language and applying design principles,
   C5 Use and apply modelling techniques to analyse and design solutions to simple problems,
   C6 Work in small teams to solve simple development problems.

D – Transferable Skills
   D1 Communicate orally and in writing using appropriate structures, facts and events,
   D2 Conduct and report within a set time and context on work assigned,
   D3 Find facts to describe and explain simple phenomena and artefacts,
   D4 Work independently to achieve set goals,
   D5 Work efficiently and effectively in small groups within limited and set contexts,
   D6 Appreciate the professional and ethical issues involved in IT.
8. LEARNING AND TEACHING STRATEGIES AND METHODS

There are whole-group lectures, and small-group seminars and laboratory sessions as appropriate to the subject. Technical subjects at Levels C and I are taught in a combination of whole cohort lectures and smaller group laboratory sessions, where students learn the practical application of the theory presented in lectures. For some subjects it has been found that ‘drop-in’ workshops can beneficially either replace or augment structured sessions (seminar/laboratory), and that larger groups with a more fluid and larger set of staff can also provide more focus on students, and concentrate staff time beneficially as well. Some subjects lend themselves to large-group tutorials, where a lecture space is used but the approach is more like a seminar.

In addition, there are opportunities for student independent learning through Project work, including team-based projects. At Level C there is a simulated Computing in Business experience, in which students work in small teams to provide an IT solution to a business problem. This is essentially a short, intense experience, ending with a presentation or an exhibition.

At Level I, students undertake a group project developing a solution to a Level I route specific problem. They organise their own team and project manage the task, producing documentation explaining the methods and techniques they employed. They also produce a reflective evaluation of their process, product and experience.

At Level H, students engage in a large scale (60 credit) individual project in an area specific to their degree title and write up the results in a dissertation.

Throughout the whole framework, and at all levels, the learner is encouraged to undertake independent reading both to supplement and consolidate their knowledge and to broaden their understanding of the topics.

9. ASSESSMENT STRATEGIES AND METHODS

Student work is assessed through a wide variety of means:

- Unseen examinations
- In-class tests, online or paper-based
- Formal presentations
- Demonstrations of working software
- Production of development documentation of various types, as appropriate to the subject
- Essays
- Reports of various types, such as business reports and experiment reports
- Exhibitions
- Dissertations (Level H)

The overall strategy is to use terminal unseen examinations in conjunction with other assessments during the year in the form of coursework assignments. For the coursework assessments, a balanced mix of assessment types are provided. These non-exam assessments are also useful for the students, who can judge their own performance during the semester and respond appropriately. Coursework assignments are mainly individual but some involve working in teams.

Most units are assessed 50:50 exam:coursework. However, depending on the nature and content of units, other ratios of assessment are adopted. Where appropriate to the subject matter and the students’ learning experience, a small number of units are assessed by 100% coursework. Units of a predominantly practical nature may be assessed 30:70 exam:coursework while units where the main focus is mainly theoretical/conceptual may be assessed by 70:30 exam:coursework.
Many coursework assignments have a formative element, either in their execution or the student’s preparation for them.

Assessment at Level C focuses on ensuring that students have understood the main concepts of each unit and are able to put them, and the associated technical and transferable skills, into practice in relatively simple and straightforward scenarios. At Level I, a greater depth of understanding is required. Students are expected to solve problems of intermediate complexity. At Level H, assessments are aimed at evaluating the students’ conceptual understanding of the topics studied.

10. PROGRAMME SKILLS MATRICES

The aim of these matrices is to show the relationship between ILOs specified at programme and unit levels.
Programme Skills Matrix for core units - BUSINESS INFORMATION TECHNOLOGY [For Academic Year 2015-16 onwards]

Matrix table showing the relationship between ILOs for a programme and its constituent units

<table>
<thead>
<tr>
<th>Units</th>
<th>Programme Intended Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A 1</td>
</tr>
<tr>
<td>Level H Business Development &amp; Enterprise</td>
<td>X</td>
</tr>
<tr>
<td>Level H Data Mining</td>
<td>X</td>
</tr>
<tr>
<td>Level H Specialist unit</td>
<td>X</td>
</tr>
<tr>
<td>Level L Individual Project</td>
<td>X</td>
</tr>
<tr>
<td>Level L Business for IT</td>
<td>X</td>
</tr>
<tr>
<td>Level L Data Management</td>
<td>X</td>
</tr>
<tr>
<td>Level L Infrastructure Strategy</td>
<td>X</td>
</tr>
<tr>
<td>Level L Project Management &amp; Teamworking</td>
<td>X</td>
</tr>
<tr>
<td>Level L Systems Design</td>
<td>X</td>
</tr>
<tr>
<td>Level L Business &amp; Professional Issues</td>
<td>X</td>
</tr>
<tr>
<td>Level L Computers &amp; Networks</td>
<td>X</td>
</tr>
<tr>
<td>Level L Programming</td>
<td>X</td>
</tr>
<tr>
<td>Level L Relational Databases</td>
<td>X</td>
</tr>
<tr>
<td>Level L Systems Analysis &amp; Design</td>
<td>X</td>
</tr>
<tr>
<td>User-centred Web Development</td>
<td>X</td>
</tr>
</tbody>
</table>

A - Subject Knowledge and Understanding
1. Business planning and the management of innovative solutions for IT.
2. Principles and techniques of data mining
3. [A specialist subject of the student’s choice in an area offered by the Framework at Level H].
4. The business context in which IT solutions to business problems are developed and evaluated.
5. The development of software or other IT solutions to business and other problems.
6. The professional, legal and ethical responsibilities of computing personnel within the organisational, technical and global contexts in which computing is applied.

B - Intellectual Skills
1. Reason critically.
2. Demonstrate independent thought.
3. Analyse, interpret, synthesise and evaluate information.
4. Identify and solve problems.
5. Select and apply appropriate design methods to the solution of problems.
6. Evaluate resource requirements of alternative solutions.

C - Subject-specific/Practical Skills
1. Retrieve, select and evaluate information from a variety of sources.
2. Formulate a set of requirements for an IT solution.
3. Design a solution to an IT problem.
4. Implement a solution to an IT problem.
5. Evaluate an IT system.
6. Plan, monitor, and evaluate the progress of an IT project.

D - Transferable Skills
1. Structure and communicate ideas effectively, both orally and in writing.
2. Learn independently in complicated contexts.
3. Work professionally as an individual to develop creative solutions to problems.
4. Work professionally in teams to develop creative solutions to problems.
## Programme Skills Matrix for core units - BUSINESS INFORMATION TECHNOLOGY [For Academic Year 2014-15 only]

Matrix table showing the relationship between ILOs for a programme and its constituent units

<table>
<thead>
<tr>
<th>Units</th>
<th>Programme Intended Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Level H</td>
<td>Specialist unit</td>
</tr>
<tr>
<td>Level I</td>
<td>Specialist unit</td>
</tr>
<tr>
<td>Individual Project</td>
<td>X</td>
</tr>
<tr>
<td>Level I</td>
<td>Business for IT</td>
</tr>
<tr>
<td>Data Management</td>
<td>X</td>
</tr>
<tr>
<td>Infrastructure Strategy</td>
<td>X</td>
</tr>
<tr>
<td>Project Management &amp; Teamworking</td>
<td>X</td>
</tr>
<tr>
<td>Systems Design</td>
<td>X</td>
</tr>
<tr>
<td>Level C</td>
<td>Business &amp; Professional Issues</td>
</tr>
<tr>
<td>Computers &amp; Networks</td>
<td>X</td>
</tr>
<tr>
<td>Programming</td>
<td>X</td>
</tr>
<tr>
<td>Relational Databases</td>
<td>X</td>
</tr>
<tr>
<td>Systems Analysis &amp; Design</td>
<td>X</td>
</tr>
<tr>
<td>User-centred Web Development</td>
<td>X</td>
</tr>
</tbody>
</table>

**A - Subject Knowledge and Understanding**

1-3. Three specialist subjects of the student’s choice in an area offered by the Framework at Level H.

4. The business context in which IT solutions to business problems are developed and evaluated.

5. The development of software or other IT solutions to business and other problems.

6. The professional, legal and ethical responsibilities of computing personnel within the organisational, technical and global contexts in which computing is applied.

**C – Subject-specific/Practical Skills**

1. Retrieve, select and evaluate information from a variety of sources.

2. Formulate a set of requirements for an IT solution.

3. Design a solution to an IT problem.

4. Implement a solution to an IT problem.

5. Evaluate an IT system.

6. Plan, monitor, and evaluate the progress of an IT project.

**B - Intellectual Skills**

1. Reason critically.

2. Demonstrate independent thought.

3. Analyse, interpret, synthesise and evaluate information.

4. Identify and solve problems.

5. Select and apply appropriate design methods to the solution of problems.

6. Evaluate resource requirements of alternative solutions.

**D - Transferable Skills**

1. Structure and communicate ideas effectively, both orally and in writing.

2. Learn independently in complicated contexts.

3. Work professionally as an individual to develop creative solutions to problems.

4. Work professionally in teams to develop creative solutions to problems.
## Programme Skills Matrix for core units – COMPUTER NETWORKS

Matrix table showing the relationship between ILOs for a programme and its constituent units

<table>
<thead>
<tr>
<th>Units</th>
<th>Programme Intended Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A 1</td>
</tr>
<tr>
<td>L E V E L H</td>
<td></td>
</tr>
<tr>
<td>Advanced Networks</td>
<td>X</td>
</tr>
<tr>
<td>Network Configuration Management</td>
<td>X</td>
</tr>
<tr>
<td>Specialist unit</td>
<td>X</td>
</tr>
<tr>
<td>Individual Project</td>
<td>X</td>
</tr>
<tr>
<td>L E V E L I</td>
<td></td>
</tr>
<tr>
<td>Network &amp; Software Engineering</td>
<td>X</td>
</tr>
<tr>
<td>Infrastructure Strategy</td>
<td>X</td>
</tr>
<tr>
<td>Project Management &amp; Teamworking</td>
<td>X</td>
</tr>
<tr>
<td>Systems Design</td>
<td></td>
</tr>
<tr>
<td>L E V E L C</td>
<td></td>
</tr>
<tr>
<td>Business &amp; Professional Issues</td>
<td>X</td>
</tr>
<tr>
<td>Computers &amp; Networks</td>
<td>X</td>
</tr>
<tr>
<td>Relational Databases</td>
<td>X</td>
</tr>
<tr>
<td>Systems Analysis &amp; Design</td>
<td>X</td>
</tr>
<tr>
<td>User-centred Web Development</td>
<td>X</td>
</tr>
</tbody>
</table>

### A - Subject Knowledge and Understanding
1. Principles of network communication systems.
2. Configuration and management of network systems.
3. [A specialist subject of the student’s choice in an area offered by the Framework at Level H].
4. A rigorous engineering approach to investigating and solving network problems.
5. The development of software or other IT solutions to business and other problems.
6. The professional, legal and ethical responsibilities of computing personnel within the organisational, technical, and global contexts in which computing is applied.

### B - Intellectual Skills
1. Reason critically.
2. Demonstrate independent thought.
3. Analyse, interpret, synthesise and evaluate information.
4. Identify and solve problems.
5. Select and apply appropriate design methods to the solution of problems.
6. Evaluate resource requirements of alternative solutions.

### C - Subject-specific/Practical Skills
1. Retrieve, select and evaluate information from a variety of sources.
2. Formulate a set of requirements for an IT solution.
3. Design a solution to an IT problem.
4. Implement a solution to an IT problem.
5. Evaluate an IT system.
6. Plan, monitor, and evaluate the progress of an IT project.

### D - Transferable Skills
1. Structure and communicate ideas effectively, both orally and in writing.
2. Learn independently in complicated contexts.
3. Work professionally as an individual to develop creative solutions to problems.
4. Work professionally in teams to develop creative solutions to problems.
# Programme Skills Matrix for core units - COMPUTING

## Matrix table showing the relationship between ILOs for a programme and its constituent units

<table>
<thead>
<tr>
<th>Units</th>
<th>Programme Intended Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A 1</td>
</tr>
<tr>
<td>L E V E L H</td>
<td>Specialist unit</td>
</tr>
<tr>
<td></td>
<td>Specialist unit</td>
</tr>
<tr>
<td></td>
<td>Specialist unit</td>
</tr>
<tr>
<td></td>
<td>Individual Project</td>
</tr>
<tr>
<td>L E V E L I</td>
<td>Network &amp; Software Engineering</td>
</tr>
<tr>
<td></td>
<td>Infrastructure Strategy</td>
</tr>
<tr>
<td></td>
<td>Project Management &amp; Teamworking</td>
</tr>
<tr>
<td></td>
<td>Systems Design</td>
</tr>
<tr>
<td>L E V E L C</td>
<td>Business &amp; Professional Issues</td>
</tr>
<tr>
<td></td>
<td>Computers &amp; Networks</td>
</tr>
<tr>
<td></td>
<td>Programming</td>
</tr>
<tr>
<td></td>
<td>Relational Databases</td>
</tr>
<tr>
<td></td>
<td>Systems Analysis &amp; Design</td>
</tr>
<tr>
<td></td>
<td>User-centred Web Development</td>
</tr>
</tbody>
</table>

### A - Subject Knowledge and Understanding
1. Three specialist subjects of the student’s choice in an area offered by the Framework at Level H.
2. A rigorous engineering approach to investigating and solving computing problems.
3. The development of software or other IT solutions to business and other problems.
4. The professional, legal and ethical responsibilities of computing personnel within the organisational, technical and global contexts in which computing is applied.

### B - Intellectual Skills
1. Reason critically.
2. Demonstrate independent thought.
3. Analyse, interpret, synthesise and evaluate information.
4. Identify and solve problems.
5. Select and apply appropriate design methods to the solution of problems.
6. Evaluate resource requirements of alternative solutions.

### C - Subject-specific/Practical Skills
1. Retrieve, select and evaluate information from a variety of sources.
2. Formulate a set of requirements for an IT solution.
3. Design a solution to an IT problem.
4. Implement a solution to an IT problem.
5. Evaluate an IT system.
6. Plan, monitor, and evaluate the progress of an IT project.

### D - Transferable Skills
1. Structure and communicate ideas effectively, both orally and in writing.
2. Learn independently in complicated contexts.
3. Work professionally as an individual to develop creative solutions to problems.
4. Work professionally in teams to develop creative solutions to problems.
Programme Skills Matrix for core units – FORENSIC COMPUTING & SECURITY

Matrix table showing the relationship between ILOs for a programme and its constituent units

<table>
<thead>
<tr>
<th>Units</th>
<th>Programme Intended Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Level H</td>
<td>Security by Design</td>
</tr>
<tr>
<td></td>
<td>Information Assurance</td>
</tr>
<tr>
<td></td>
<td>Specialist unit</td>
</tr>
<tr>
<td></td>
<td>Individual Project</td>
</tr>
<tr>
<td>Level I</td>
<td>Digital Forensics</td>
</tr>
<tr>
<td></td>
<td>Ethical Hacking &amp; Countermeasures</td>
</tr>
<tr>
<td></td>
<td>Infrastructure Strategy</td>
</tr>
<tr>
<td></td>
<td>Project Management &amp; Teamworking</td>
</tr>
<tr>
<td></td>
<td>Systems Design</td>
</tr>
</tbody>
</table>

A - Subject Knowledge and Understanding
1. Information assurance and cyber security.
2. Digital forensic science and governance.
3. [A specialist subject of the student’s choice in an area offered by the Framework at Level H].
4. How forensic and ethical hacking processes can be used to support information security
5. The development of software or other IT solutions to business and other problems.
6. The professional, legal and ethical responsibilities of computing personnel within the organisational, technical and global contexts in which computing is applied.

B - Intellectual Skills
1. Reason critically.
2. Demonstrate independent thought.
3. Analyse, interpret, synthesise and evaluate information.
4. Identify and solve problems.
5. Select and apply appropriate design methods to the solution of problems.
6. Evaluate resource requirements of alternative solutions.

C - Subject-specific/Practical Skills
1. Retrieve, select and evaluate information from a variety of sources.
2. Formulate a set of requirements for an IT solution.
3. Design a solution to an IT problem.
4. Implement a solution to an IT problem.
5. Evaluate an IT system.
6. Plan, monitor, and evaluate the progress of an IT project.

D - Transferable Skills
1. Structure and communicate ideas effectively, both orally and in writing.
2. Learn independently in complicated contexts.
3. Work professionally as an individual to develop creative solutions to problems.
4. Work professionally in teams to develop creative solutions to problems.
Programme Skills Matrix for core units – INFORMATION TECHNOLOGY MANAGEMENT

Matrix table showing the relationship between ILOs for a programme and its constituent units

<table>
<thead>
<tr>
<th>Units</th>
<th>Programme Intended Learning Outcomes</th>
<th>A 1</th>
<th>A 2</th>
<th>A 3</th>
<th>A 4</th>
<th>A 5</th>
<th>A 6</th>
<th>B 1</th>
<th>B 2</th>
<th>B 3</th>
<th>B 4</th>
<th>B 5</th>
<th>B 6</th>
<th>C 1</th>
<th>C 2</th>
<th>C 3</th>
<th>C 4</th>
<th>C 5</th>
<th>C 6</th>
<th>D 1</th>
<th>D 2</th>
<th>D 3</th>
<th>D 4</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>LEVEL H</strong></td>
<td><strong>Business Processes &amp; Requirements</strong></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td><strong>Management in Computing</strong></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td><strong>Specialist unit</strong></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td><strong>Individual Project</strong></td>
<td>X</td>
</tr>
<tr>
<td><strong>LEVEL I</strong></td>
<td><strong>Business for IT</strong></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td><strong>Data Management</strong></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td><strong>Infrastructure Strategy</strong></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td><strong>Project Management &amp; Teamworking</strong></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td><strong>Systems Design</strong></td>
<td>X</td>
</tr>
<tr>
<td><strong>LEVEL C</strong></td>
<td><strong>Business &amp; Professional Issues</strong></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td><strong>Computers &amp; Networks</strong></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td><strong>Programming</strong></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td><strong>Relational Databases</strong></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td><strong>Systems Analysis &amp; Design</strong></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td><strong>User-centred Web Development</strong></td>
<td>X</td>
</tr>
</tbody>
</table>

**A - Subject Knowledge and Understanding**
1. Management principles, techniques and methods, for IT in business.
2. Business processes and IT requirements.
3. [A specialist subject of the student’s choice in an area offered by the Framework at Level H].
4. The business context in which IT solutions to business problems are developed and evaluate.
5. The development of software or other IT solutions to business and other problems.
6. The professional, legal and ethical responsibilities of computing personnel within the organisational, technical and global contexts in which computing is applied.

**B - Intellectual Skills**
1. Reason critically.
2. Demonstrate independent thought.
3. Analyse, interpret, synthesise and evaluate information.
4. Identify and solve problems.
5. Select and apply appropriate design methods to the solution of problems.
6. Evaluate resource requirements of alternative solutions.

**C - Subject-specific/Practical Skills**
1. Retrieve, select and evaluate information from a variety of sources.
2. Formulate a set of requirements for an IT solution.
3. Design a solution to an IT problem.
4. Implement a solution to an IT problem.
5. Evaluate an IT system.
6. Plan, monitor, and evaluate the progress of an IT project.

**D - Transferable Skills**
1. Structure and communicate ideas effectively, both orally and in writing.
2. Learn independently in complicated contexts.
3. Work professionally as an individual to develop creative solutions to problems.
4. Work professionally in teams to develop creative solutions to problems.
# Programme Skills Matrix for core units – SOFTWARE ENGINEERING

Matrix table showing the relationship between ILOs for a programme and its constituent units

<table>
<thead>
<tr>
<th>Units</th>
<th>Programme Intended Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>L E V E L H</td>
<td></td>
</tr>
<tr>
<td>Software Quality &amp; Testing</td>
<td>X</td>
</tr>
<tr>
<td>Software Systems Modelling</td>
<td>X</td>
</tr>
<tr>
<td>Specialist unit</td>
<td>X</td>
</tr>
<tr>
<td>Individual Project</td>
<td>X</td>
</tr>
<tr>
<td>L E V E L I</td>
<td></td>
</tr>
<tr>
<td>Network &amp; Software Engineering</td>
<td>X</td>
</tr>
<tr>
<td>Infrastructure Strategy</td>
<td>X</td>
</tr>
<tr>
<td>Project Management &amp; Teamworking</td>
<td>X</td>
</tr>
<tr>
<td>Systems Design</td>
<td>X</td>
</tr>
<tr>
<td>L E V E L C</td>
<td></td>
</tr>
<tr>
<td>Business &amp; Professional Issues</td>
<td></td>
</tr>
<tr>
<td>Computers &amp; Networks</td>
<td></td>
</tr>
<tr>
<td>Programming</td>
<td>X</td>
</tr>
<tr>
<td>Relational Databases</td>
<td>X</td>
</tr>
<tr>
<td>Systems Analysis &amp; Design</td>
<td>X</td>
</tr>
<tr>
<td>User-centred Web Development</td>
<td>X</td>
</tr>
</tbody>
</table>

### A - Subject Knowledge and Understanding
1. Modelling of software systems.
2. Software quality and testing.
3. [A specialist subject of the student’s choice in an area offered by the Framework at Level H].
4. A rigorous engineering approach to investigating and solving software problems.
5. The development of software or other IT solutions to business and other problems.
6. The professional, legal and ethical responsibilities of computing personnel within the organisational, technical and global contexts in which computing is applied.

### B - Intellectual Skills
1. Reason critically.
2. Demonstrate independent thought.
3. Analyse, interpret, synthesise and evaluate information.
4. Identify and solve problems.
5. Select and apply appropriate design methods to the solution of problems.
6. Evaluate resource requirements of alternative solutions.

### C - Subject-specific/Practical Skills
1. Retrieve, select and evaluate information from a variety of sources.
2. Formulate a set of requirements for an IT solution.
3. Design a solution to an IT problem.
4. Implement a solution to an IT problem.
5. Evaluate an IT solution.
6. Plan, monitor, and evaluate the progress of an IT project.

### D - Transferable Skills
1. Structure and communicate ideas effectively, both orally and in writing.
2. Learn independently in complicated contexts.
3. Work professionally as an individual to develop creative solutions to problems.
4. Work professionally in teams to develop creative solutions to problems.
11. WORK-BASED LEARNING (WBL) / PLACEMENTS ELEMENTS

All pathways offer a placement unit which takes place in the year after Level I. It bears no credit rating and students are assessed as Pass or Fail. The duration of the placement is normally a minimum of 30 weeks supervised work experience and the aims of the placement year are to give the students experience of working within an appropriate professional environment which will contribute to their potential employability, mobility and global awareness.

At commencement of the programme all students will be enrolled on the four year sandwich degree. Completion of the four year degree will entitle students to a ‘sandwich award’.

The placement is recognised at Bournemouth as adding considerable value to graduate profiles, and school leavers and their equivalent age group are very strongly advised to follow the sandwich route.

Exemption is possible for those who have had relevant experience, for example, mature students who have experience of the world of work and who may need to complete their course in three years for family or financial reasons. In some cases, on submission of relevant evidence such students may be eligible for Accreditation of Prior Experiential Learning (APL). This will give them exemption from the placement year but will still entitle them to a sandwich degree. Consideration of APL will be discussed by the School’s Placements Panel.

Students may wish to opt out of placement for personal, family, financial or other reasons. Such students need to formally apply to be transferred to the full-time three year degree by a specified deadline and provide a rationale for opting out of placement. Their application will be subject to approval by the School’s Placements Panel. Completion of the three year full-time degree will entitle students to a ‘full-time’ award.

Late Changes: Students whose circumstances change, may be allowed to change their decision after the deadline subject to capacity. Given the need to operate seminars and laboratories with sufficient numbers to make the learning experience suitably rich and diverse, there will not be scope for many learners to change their decision. Switching is thus only a possibility, and is not guaranteed. This will usually only be allowed if there are special circumstances.

12. PROGRAMME DIAGRAMS

The programme diagrams contain, or refer to, all the units of the programme, whether core or optional, on a level-by-level basis. They also show entry and exit points into and out of the framework, with interim and final awards.
PROGRAMME DIAGRAM

BSc (Hons) Business Information Technology
[For Academic Year 2015-16 onwards]

Year 1 / Level C
Core units (Compulsory)
Business & Professional Issues (20)
Computers & Networks (20)
Programming (20)
Relational Databases (20)
Systems Analysis & Design (20)
User-centred Web Development (20)

Option units
(not applicable)

Progression requirements
Requires 120 credits at Level C
Exit qualification: Cert HE Computing
Requires 120 Level C credits

Year 2 / Level I
Core units (Compulsory)
Business for IT (20)
Data Management (20)
Infrastructure Strategy (20)
Project Management & Teamworking (20)
Systems Design (20)

Option units
Choose 1 of the following:
Application Programming (20)
Web Programming (20)
Web Technology Integration (20)

Progression requirements
Requires 120 credits at Level I
Exit qualification: Dip HE Business Information Technology
Requires 120 Level I credits and 120 Level C credits

Year 3 / Level P
Placement year in industry/business
Exemption is possible for those who have worked in industry/business at a relevant level.
Students who provide an acceptable rationale for not undertaking the placement may transfer to a three year full-time course of study.

Progression requirements
Satisfactory completion of a minimum of 30 weeks of work in industry/business

Year 4 / Level H
Core units (Compulsory)
Business Development & Enterprise (20)
Data Mining (20)
Individual Project (60)

Option units
Choose 1 of the following:

Exit qualification: BSc (Hons) Business Information Technology
Requires 120 Level H credits, 120 Level I credits and 120 Level C credits for the ‘Full-time Award’ plus successful completion of a placement year for the ‘Sandwich Award’.
### PROGRAMME DIAGRAM
#### BSc (Hons) Information Technology Management

**Year 4 / Level H**

- **Core units (Compulsory)**
  - Business Processes & Requirements (20)
  - Management in Computing (20)
  - Individual Project (60)
- **Option units**
  - Choose 1 of the following:
    - Advanced Development
    - Advanced Networks
    - Business Development & Enterprise
    - Data Mining
    - Human Factors in Computing Systems
    - Information Assurance
    - Machine Intelligence for Business Decision Making
    - Network Configuration Management
    - Security by Design
    - Software Quality & Testing
    - Software Systems Modelling
    - Ubiquitous & Pervasive Computing Systems
    - Web Information Systems
- **Exit qualification:** BSc (Hons) Information Technology Management
  - Requires 120 Level H credits, 120 Level I credits and 120 Level C credits for the ‘Full-time Award’ plus successful completion of a placement year for the ‘Sandwich Award’.

**Year 3 / Level P**

- **Placement year in industry/business**
  - Exemption is possible for those who have worked in industry/business at a relevant level.
  - Students who provide an acceptable rationale for not undertaking the placement may transfer to a three year full-time course of study.
- **Option units**
  - Choose 1 of the following:
    - Advanced Development
    - Advanced Networks
    - Business Development & Enterprise
    - Data Mining
    - Human Factors in Computing Systems
    - Information Assurance
    - Machine Intelligence for Business Decision Making
    - Network Configuration Management
    - Security by Design
    - Software Quality & Testing
    - Software Systems Modelling
    - Ubiquitous & Pervasive Computing Systems
    - Web Information Systems
- **Progression requirements**
  - Satisfactory completion of a minimum of 30 weeks of work in industry/business

**Year 2 / Level I**

- **Core units (Compulsory)**
  - Business for IT (20)
  - Data Management (20)
  - Infrastructure Strategy (20)
  - Project Management & Teamworking (20)
  - Systems Design (20)
- **Option units**
  - Choose 1 of the following:
    - Application Programming (20)
    - Web Programming (20)
    - Web Technology Integration (20)
- **Progression requirements**
  - Requires 120 credits at Level I
- **Exit qualification:** Dip HE Business Information Technology
  - Requires 120 Level I credits and 120 Level C credits

**Year 1 / Level C**

- **Core units (Compulsory)**
  - Business & Professional Issues (20)
  - Computers & Networks (20)
  - Programming (20)
  - Relational Databases (20)
  - Systems Analysis & Design (20)
  - User-centred Web Development (20)
- **Option units**
  - (not applicable)
- **Progression requirements**
  - Requires 120 credits at Level C
- **Exit qualification:** Cert HE Computing
  - Requires 120 Level C credits
### Year 1 / Level C

**Core units (Compulsory)**
- Business & Professional Issues (20)
- Computers & Networks (20)
- Programming (20)
- Relational Databases (20)
- Systems Analysis & Design (20)
- User-centred Web Development (20)

**Option units**
- (not applicable)

**Progression requirements**
Requires 120 credits at Level C

**Exit qualification:** Cert HE Computing
Requires 120 Level C credits

---

### Year 2 / Level I

**Core units (Compulsory)**
- Network & Software Engineering (20)
- Infrastructure Strategy (20)
- Project Management & Teamworking (20)
- Systems Design (20)

**Option units**
- Choose 1 of the following:
  - Application Programming (20)
  - Data Management (20)
- Choose 1 of the following:
  - Web Programming (20)
  - Web Technology Integration (20)

**Progression requirements**
Satisfactory completion of a minimum of 30 weeks of work in industry/business

**Exit qualification:** Dip HE Computing
Requires 120 Level I credits and 120 Level C credits

---

### Year 3 / Level P

**Core units (Compulsory)**
- Advanced Networks (20)
- Network Configuration Management (20)
- Individual Project (60)

**Option units**
- Placement year in industry/business
- Exemption is possible for those who have worked in industry/business at a relevant level.
- Students who provide an acceptable rationale for not undertaking the placement may transfer to a three year full-time course of study.

**Progression requirements**
Satisfactory completion of a minimum of 30 weeks of work in industry/business

**Exit qualification:** BSc (Hons) Computer Networks
Requires 120 Level H credits, 120 Level I credits and 120 Level C credits for the ‘Full-time Award’ plus successful completion of a placement year for the ‘Sandwich Award’.

---

### Year 4 / Level H

**Core units (Compulsory)**
- Advanced Networks (20)
- Network Configuration Management (20)
- Individual Project (60)

**Option units**
- Choose 1 of the following:
  - Advanced Development; Business Development & Enterprise; Business Processes & Requirements; Data Mining; Human Factors in Computing Systems; Information Assurance; Machine Intelligence for Business Decision Making; Management in Computing; Security by Design; Software Quality & Testing; Software Systems Modelling; Ubiquitous & Pervasive Computing Systems; Web Information Systems.

**Progression requirements**
Requires 120 credits at Level C
**Year 1 / Level C**

**Core units (Compulsory)**
- Business & Professional Issues (20)
- Computers & Networks (20)
- Programming (20)
- Relational Databases (20)
- Systems Analysis & Design (20)
- User-centred Web Development (20)

**Option units**
(not applicable)

**Progression requirements**
Requires 120 credits at Level C

**Exit qualification:** Cert HE Computing
Requires 120 Level C credits

---

**Year 2 / Level I**

**Core units (Compulsory)**
- Network & Software Engineering (20)
- Infrastructure Strategy (20)
- Project Management & Teamworking (20)
- Systems Design (20)

**Option units**
- Choose 1 of the following:
  - Application Programming (20)
  - Data Management (20)
- Choose 1 of the following:
  - Web Programming (20)
  - Web Technology Integration (20)

**Progression requirements**
Satisfactory completion of a minimum of 30 weeks of work in industry/business

**Exit qualification:** Dip HE Computing
Requires 120 Level I credits and 120 Level C credits

---

**Year 3 / Level P**

**Placement year in industry/business**
Exemption is possible for those who have worked in industry/business at a relevant level.
Students who provide an acceptable rationale for not undertaking the placement may transfer to a three year full-time course of study.

**Progression requirements**
Satisfactory completion of a minimum of 30 weeks of work in industry/business

---

**Year 4 / Level H**

**Core units (Compulsory)**
- Individual Project (60)

**Option units - Choose 3 of the following, excluding a choice that includes both units of a "core pair" for another degree title:**

**Exit qualification:** BSc (Hons) Computing
Requires 120 Level H credits, 120 Level I credits and 120 Level C credits for the ‘Full-time Award’ plus successful completion of a placement year for the ‘Sandwich Award’.

---

**PROGRAMME DIAGRAM**

**BSc (Hons) Computing**
PROGRAMME DIAGRAM
BSc (Hons) Software Engineering

Year 4 / Level H

Core units (Compulsory)
- Software Quality & Testing (20)
- Software Systems Modelling (20)
- Individual Project (60)

Option units
Choose 1 of the following:
- Advanced Development
- Advanced Networks
- Business Development & Enterprise
- Business Processes & Requirements
- Data Mining
- Human Factors in Computing Systems
- Information Assurance
- Machine Intelligence for Business Decision Making
- Management in Computing
- Network Configuration
- Management: Security by Design
- Ubiquitous & Pervasive Computing Systems
- Web Information Systems.

Exit qualification: BSc (Hons) Software Engineering
Requires 120 Level H credits, 120 Level I credits and 120 Level C credits for the ‘Full-time Award’ plus successful completion of a placement year for the ‘Sandwich Award’.

Year 3 / Level P

Placement year in industry/business
Exemption is possible for those who have worked in industry/business at a relevant level. Students who provide an acceptable rationale for not undertaking the placement may transfer to a three year full-time course of study.

Progression requirements
Satisfactory completion of a minimum of 30 weeks of work in industry/business

Year 2 / Level I

Core units (Compulsory)
- Network & Software Engineering (20)
- Infrastructure Strategy (20)
- Project Management & Teamworking (20)
- Systems Design (20)

Option units
Choose 1 of the following:
- Application Programming (20)
- Data Management (20)

Choose 1 of the following:
- Web Programming (20)
- Web Technology Integration (20)

Progression requirements
Requires 120 credits at Level I

Exit qualification: Dip HE Computing
Requires 120 Level I credits and 120 Level C credits

Year 1 / Level C

Core units (Compulsory)
- Business & Professional Issues (20)
- Computers & Networks (20)
- Programming (20)
- Relational Databases (20)
- Systems Analysis & Design (20)
- User-centred Web Development (20)

(not applicable)

Progression requirements
Requires 120 credits at Level C

Exit qualification: Cert HE Computing
Requires 120 Level C credits
# PROGRAMME DIAGRAM

## BSc (Hons) Forensic Computing & Security

### Year 4 / Level H

**Core units (Compulsory)**
- Security by Design (20)
- Information Assurance (20)
- Individual Project (60)

**Option units**  
Choose 1 of the following:  

**Exit qualification:** BSc (Hons) Forensic Computing & Security  
Requires 120 Level H credits, 120 Level I credits and 120 Level C credits for the ‘Full-time Award’ plus successful completion of a placement year for the ‘Sandwich Award’.

### Year 3 / Level P

**Placement year in industry/business**  
Exemption is possible for those who have worked in industry/business at a relevant level. Students who provide an acceptable rationale for not undertaking the placement may transfer to a three year full-time course of study.

**Progression requirements**  
Satisfactory completion of a minimum of 30 weeks of work in industry/business

### Year 2 / Level I

**Core units (Compulsory)**
- Digital Forensics (20)
- Ethical Hacking & Countermeasures (20)
- Infrastructure Strategy (20)
- Project Management & Teamworking (20)
- Systems Design (20)

**Option units**  
Choose 1 of the following:  
- Data Management (20)
- Application Programming (20)
- Web Programming (20)
- Web Technology Integration (20)

**Progression requirements**  
Requires 120 credits at Level I

**Exit qualification:** Dip HE Forensics Computing & Security  
Requires 120 Level I credits and 120 Level C credits

### Year 1 / Level C

**Core units (Compulsory)**
- Business & Professional Issues (20)
- Computers & Networks (20)
- Programming (20)
- Relational Databases (20)
- Systems Analysis & Design (20)
- User-centred Web Development (20)

**Option units**  
(not applicable)

**Progression requirements**  
Requires 120 credits at Level C

**Exit qualification:** Cert HE Computing  
Requires 120 Level C credits
13. ADMISSION REGULATIONS

The regulations for this framework are the University’s Standard Undergraduate and Postgraduate Admission Regulations (the University Standard Admission Regulations are available on the BU SharePoint site at https://intranetsp.bournemouth.ac.uk/Documents/arptop.aspx with the following exceptions:

Internal Progression
Students who successfully complete the Bournemouth & Poole College FdSc Computing with a merit average at level 5 will be eligible to apply for entry with advanced standing to the BSc programmes at BU (stated below) and credited with 120 credits at Level 4 and 120 credits at Level 5.

BSc (Hons) Business Information Technology
BSc (Hons) Information Technology Management
BSc (Hons) Computing
BSc (Hons) Computer Networks
BSc (Hons) Software Engineering

Students who have successfully completed the Yeovil College FdSc Computing and Internet Technology or FdSc Computing with an average mark of 60% will be eligible to apply for entry with advanced standing to Level H of the BSc (Hons) Business Information Technology, BSc (Hons) Information Technology Management, BSc (Hons) Software Engineering, BSc (Hons) Computer Networks or BSc (Hons) Computing programmes and credited with 120 credits at Level C and 120 credits at Level I.

Students who have successfully completed the Defence School of Communications and Information Systems FdSc Communications Systems Management will be eligible to apply for entry with advanced standing to Level H of the BSc (Hons) Information Technology Management Programme and credited with 120 credits at Level C and 120 credits at Level I.

Recognition
Students who have successfully completed the BBSI (University Foundation course) in Science, Mathematics and IT with a minimum classification of 60% Credit profile, will be eligible to apply for entry without advanced standing to Level C of BSc (Hons) Business Information Technology, BSc (Hons) Information Technology Management, BSc (Hons) Computing, BSc (Hons) Software Engineering, BSc (Hons) Forensic Computing & Security, BSc (Hons) Computer Networks.

Articulation:
Students who have successfully completed the Bournemouth University International College (Kaplan) Computing Pathway with a minimum of 50% course average and 60% in English will be automatically accepted for entry without advanced standing to Level C of BSc (Hons) Business Information Technology, BSc (Hons) Information Technology Management, BSc (Hons) Computing, BSc (Hons) Software Engineering, BSc (Hons) Forensic Computing & Security, BSc (Hons) Computer Networks.

14. ASSESSMENT REGULATIONS

The regulations for this programme are the University’s Standard Undergraduate Assessment Regulations.

15. PROGRAMME PROFILES

The Programme Profiles are tabular summaries of key unit details for each programme.
### 15.1 PROGRAMME PROFILE for BSc (Hons) BUSINESS INFORMATION TECHNOLOGY

**Originating Institution(s):** Bournemouth University  
**School:** Design, Engineering & Computing  
**Partner:** N/A  
**Place(s) of Delivery:** Bournemouth University  
**Framework Title (in full):** Computing Undergraduate Framework  
**Programme Award and Title:** BSc (Hons) Business Information Technology  
**Interim Award and Titles & required credits:**  
- Dip HE Business Information Technology (240 credits)  
- Cert HE Computing (120 credits)  
**Mode(s) of study:** FTSW or FT  
**Expected Length of study:**  
- FTSW = 4 years  
- FT = 3 years  
**Language of delivery (if not English):** N/A  
**Programme HESA JACS code:** I161, I260  
**Unit identification**  

<table>
<thead>
<tr>
<th>Unit version no.</th>
<th>Unit name</th>
<th>HESA JACS Subject Code</th>
<th>CC 1 %</th>
<th>HESA JACS Subject Code</th>
<th>CC2 %</th>
<th>Prog. year FT</th>
<th>Prog. year PT</th>
<th>Core / option</th>
<th>No of credits</th>
<th>Level (C/4, I/5, H/6, PgC, PgD, M/7)</th>
<th>Assessment Regs: ASR</th>
<th>Assessment Element Weightings</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE1113C-2</td>
<td>Business &amp; Professional Issues</td>
<td>I100</td>
<td>133</td>
<td>100</td>
<td></td>
<td>1</td>
<td>C</td>
<td>20</td>
<td>C/4</td>
<td>50 50</td>
<td>Exam 1: C/Work 1: C/Work 2:</td>
<td>100</td>
</tr>
<tr>
<td>CSE1112C-3</td>
<td>Computers &amp; Networks</td>
<td>I120</td>
<td>121</td>
<td>100</td>
<td></td>
<td>1</td>
<td>C</td>
<td>20</td>
<td>C/4</td>
<td>50 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1085C-2</td>
<td>Programming</td>
<td>I320</td>
<td>121</td>
<td>100</td>
<td></td>
<td>1</td>
<td>C</td>
<td>20</td>
<td>C/4</td>
<td>50 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1142C-1</td>
<td>Relational Databases</td>
<td>I240</td>
<td>121</td>
<td>100</td>
<td></td>
<td>1</td>
<td>C</td>
<td>20</td>
<td>C/4</td>
<td>50 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1111C-2</td>
<td>Systems Analysis &amp; Design</td>
<td>I230</td>
<td>121</td>
<td>100</td>
<td></td>
<td>1</td>
<td>C</td>
<td>20</td>
<td>C/4</td>
<td>50 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1143C-1</td>
<td>User-centred Web Development</td>
<td>I160</td>
<td>121</td>
<td>100</td>
<td></td>
<td>1</td>
<td>C</td>
<td>20</td>
<td>C/4</td>
<td>50 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1171I-1</td>
<td>Application Programming</td>
<td>I320</td>
<td>121</td>
<td>100</td>
<td></td>
<td>2</td>
<td>O</td>
<td>20</td>
<td>I/5</td>
<td>50 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1172I-1</td>
<td>Business for IT</td>
<td>I161</td>
<td>121</td>
<td>100</td>
<td></td>
<td>2</td>
<td>C</td>
<td>20</td>
<td>I/5</td>
<td>50 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1117I-2</td>
<td>Data Management</td>
<td>I260</td>
<td>121</td>
<td>100</td>
<td></td>
<td>2</td>
<td>C</td>
<td>20</td>
<td>I/5</td>
<td>50 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1173I-1</td>
<td>Infrastructure Strategy</td>
<td>I110</td>
<td>121</td>
<td>100</td>
<td></td>
<td>2</td>
<td>C</td>
<td>20</td>
<td>I/5</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1174I-1</td>
<td>Project Management &amp; Teamworking</td>
<td>N213</td>
<td>133</td>
<td>50</td>
<td>I100</td>
<td>121</td>
<td>50</td>
<td>C</td>
<td>20</td>
<td>I/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1119I-2</td>
<td>Systems Design</td>
<td>I220</td>
<td>121</td>
<td>100</td>
<td></td>
<td>2</td>
<td>C</td>
<td>20</td>
<td>I/5</td>
<td>50 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1175I-1</td>
<td>Web Programming</td>
<td>I320</td>
<td>121</td>
<td>100</td>
<td></td>
<td>2</td>
<td>O</td>
<td>20</td>
<td>I/5</td>
<td>50 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Lect Hours</td>
<td>Lab Hours</td>
<td>Practical Hours</td>
<td>Assessment</td>
<td>Contact Hours</td>
<td>Placement Requirement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--------------------------------------------------</td>
<td>------------</td>
<td>-----------</td>
<td>-----------------</td>
<td>------------</td>
<td>---------------</td>
<td>-----------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1176I-2</td>
<td>Web Technology Integration</td>
<td>1160</td>
<td>121</td>
<td>100</td>
<td>2</td>
<td>O</td>
<td>20 H/5 50 50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1084H-2</td>
<td>Advanced Development</td>
<td>1320</td>
<td>121</td>
<td>100</td>
<td>4 (FT 3)</td>
<td>O</td>
<td>20 H/6 50 50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEE1033H-2</td>
<td>Advanced Networks</td>
<td>1120</td>
<td>121</td>
<td>100</td>
<td>4 (FT 3)</td>
<td>O</td>
<td>20 H/6 50 50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MGT1126H-2</td>
<td>Business Development &amp; Enterprise</td>
<td>1161</td>
<td>121</td>
<td>100</td>
<td>4 (FT 3)</td>
<td>C</td>
<td>20 H/6 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1083H-2</td>
<td>Business Processes &amp; Requirements</td>
<td>1230</td>
<td>121</td>
<td>100</td>
<td>4 (FT 3)</td>
<td>O</td>
<td>20 H/6 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW v1</td>
<td>Data Mining</td>
<td>1260</td>
<td>121</td>
<td>100</td>
<td>4 (FT 3)</td>
<td>C</td>
<td>20 H/6 50 50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW v1</td>
<td>Machine Intelligence for Business Decision Making</td>
<td>1270</td>
<td>121</td>
<td>100</td>
<td>4 (FT 3)</td>
<td>O</td>
<td>20 H/6 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW v2</td>
<td>Human Factors in Computing Systems</td>
<td>1140</td>
<td>121</td>
<td>100</td>
<td>4 (FT 3)</td>
<td>O</td>
<td>20 H/6 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1025H-2</td>
<td>Individual Project</td>
<td>1100</td>
<td>121</td>
<td>100</td>
<td>4 (FT 3)</td>
<td>C</td>
<td>60 H/6 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1098H-2</td>
<td>Information Assurance</td>
<td>1990</td>
<td>121</td>
<td>100</td>
<td>4 (FT 3)</td>
<td>O</td>
<td>20 H/6 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1082H-2</td>
<td>Management in Computing</td>
<td>N213</td>
<td>133</td>
<td>50 I300 121 50</td>
<td>4 (FT 3)</td>
<td>O</td>
<td>20 H/6 50 50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW v1</td>
<td>Ubiquitous &amp; Mobile Computing</td>
<td>1100</td>
<td>121</td>
<td>100</td>
<td>4 (FT 3)</td>
<td>O</td>
<td>20 H/6 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEE1081H-4</td>
<td>Network Configuration Management</td>
<td>1220</td>
<td>121</td>
<td>100</td>
<td>4 (FT 3)</td>
<td>O</td>
<td>20 H/6 50 50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW v1</td>
<td>Security by Design</td>
<td>1990</td>
<td>121</td>
<td>100</td>
<td>4 (FT 3)</td>
<td>O</td>
<td>20 H/6 50 50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1086H-2</td>
<td>Software Quality &amp; Testing</td>
<td>1300</td>
<td>121</td>
<td>100</td>
<td>4 (FT 3)</td>
<td>O</td>
<td>20 H/6 50 50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1087H-2</td>
<td>Software Systems Modelling</td>
<td>1310</td>
<td>121</td>
<td>100</td>
<td>4 (FT 3)</td>
<td>O</td>
<td>20 H/6 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW v1</td>
<td>Web Information Systems</td>
<td>1160</td>
<td>121</td>
<td>100</td>
<td>4 (FT 3)</td>
<td>O</td>
<td>20 H/6 50 50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Effective from
Prog Year / Month / Year
Yr. 1         Sept 2016
Yr. 2         Sept 2017
Yr. 3         Sept 2018/19
Yr. 4         Sept 2019/20

Contact in School:
M Coles (mcoles@bournemouth.ac.uk)

Date approved: 4.7.14
Programme Specification version no.: 2.11

Placement: a minimum of 30 weeks Core for FTSW
Diploma Supplement Statement regarding PRSB accreditation:

Name of Professional, Statutory or Regulatory Body (if appropriate):
BCS (British Computer Society)
### 15.2 PROGRAMME PROFILE for BSc (Hons) INFORMATION TECHNOLOGY MANAGEMENT

<table>
<thead>
<tr>
<th>Originating Institution(s):</th>
<th>Place(s) of Delivery:</th>
<th>Framework Title (in full): <strong>Computing Undergraduate Framework</strong></th>
<th>Mode(s) of study:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bournemouth University</td>
<td>Bournemouth University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>School: Design, Engineering &amp; Computing</td>
<td>Language of delivery (if not English): N/A</td>
<td>Programmes</td>
<td>Expected Length of study:</td>
</tr>
<tr>
<td>Partner: N/A</td>
<td></td>
<td>- BSc (Hons) Information Technology Management</td>
<td>FTSW or FT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interim Award and Titles &amp; required credits:</td>
<td>FTSW = 4 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Dip HE Business Information Technology (240 credits)</td>
<td>FT = 3 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Cert HE Computing (120 credits)</td>
<td>BU Credit Structure &amp; ECTS:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### BU Credit Structure & ECTS:
- Level H 120 (60 ECTS)
- Level I 120 (60 ECTS)
- Level C 120 (60 ECTS)

<table>
<thead>
<tr>
<th>Unit identification</th>
<th>Cost Centre(s)</th>
<th>Unit Details</th>
<th>Assessment Regs: ASR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit version no.</td>
<td>HESA JACS Subject Code</td>
<td>CC 1</td>
<td>%</td>
</tr>
<tr>
<td>CSE1113C-2</td>
<td>N100</td>
<td>133</td>
<td>100</td>
</tr>
<tr>
<td>CSE1112C-3</td>
<td>I120</td>
<td>121</td>
<td>100</td>
</tr>
<tr>
<td>CSE1085C-2</td>
<td>I320</td>
<td>121</td>
<td>100</td>
</tr>
<tr>
<td>CSE1142C-1</td>
<td>I240</td>
<td>121</td>
<td>100</td>
</tr>
<tr>
<td>CSE1111C-2</td>
<td>I230</td>
<td>121</td>
<td>100</td>
</tr>
<tr>
<td>CSE1143C-1</td>
<td>I160</td>
<td>121</td>
<td>100</td>
</tr>
<tr>
<td>CSE1117I-1</td>
<td>I320</td>
<td>121</td>
<td>100</td>
</tr>
<tr>
<td>CSE1172I-1</td>
<td>I161</td>
<td>121</td>
<td>100</td>
</tr>
<tr>
<td>CSE1117I-2</td>
<td>I260</td>
<td>121</td>
<td>100</td>
</tr>
<tr>
<td>CSE1173I-1</td>
<td>I110</td>
<td>121</td>
<td>100</td>
</tr>
<tr>
<td>CSE1174I-1</td>
<td>N213</td>
<td>133</td>
<td>50</td>
</tr>
<tr>
<td>CSE1119I-2</td>
<td>I220</td>
<td>121</td>
<td>100</td>
</tr>
<tr>
<td>CSE1175I-1</td>
<td>I320</td>
<td>121</td>
<td>100</td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>Code</td>
<td>Name</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------------------------------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>CSE1176I-2</td>
<td>Web Technology Integration</td>
<td>I160</td>
<td>121</td>
</tr>
<tr>
<td>CSE1084H-2</td>
<td>Advanced Development</td>
<td>I320</td>
<td>121</td>
</tr>
<tr>
<td>EEE1033H-2</td>
<td>Advanced Networks</td>
<td>I120</td>
<td>121</td>
</tr>
<tr>
<td>MGT1126H-2</td>
<td>Business Development &amp; Enterprise</td>
<td>I161</td>
<td>121</td>
</tr>
<tr>
<td>CSE1083H-2</td>
<td>Business Processes &amp; Requirements</td>
<td>I230</td>
<td>121</td>
</tr>
<tr>
<td>NEW v1</td>
<td>Data Mining</td>
<td>I260</td>
<td>121</td>
</tr>
<tr>
<td>NEW v1</td>
<td>Machine Intelligence for Business Decision Making</td>
<td>I270</td>
<td>121</td>
</tr>
<tr>
<td>NEW v2</td>
<td>Human Factors in Computing Systems</td>
<td>I140</td>
<td>121</td>
</tr>
<tr>
<td>CSE1025H-2</td>
<td>Individual Project</td>
<td>I100</td>
<td>121</td>
</tr>
<tr>
<td>CSE1098H-2</td>
<td>Information Assurance</td>
<td>I990</td>
<td>121</td>
</tr>
<tr>
<td>CSE1082H-2</td>
<td>Management in Computing</td>
<td>N213</td>
<td>133</td>
</tr>
<tr>
<td>NEW v1</td>
<td>Ubiquitous &amp; Mobile Computing</td>
<td>I110</td>
<td>121</td>
</tr>
<tr>
<td>EEE1081H-4</td>
<td>Network Configuration Management</td>
<td>I120</td>
<td>121</td>
</tr>
<tr>
<td>NEW V1</td>
<td>Security by Design</td>
<td>I990</td>
<td>121</td>
</tr>
<tr>
<td>CSE1086H-2</td>
<td>Software Quality &amp; Testing</td>
<td>I300</td>
<td>121</td>
</tr>
<tr>
<td>CSE1087H-2</td>
<td>Software Systems Modelling</td>
<td>I310</td>
<td>121</td>
</tr>
<tr>
<td>NEW v1</td>
<td>Web Information Systems</td>
<td>I160</td>
<td>121</td>
</tr>
</tbody>
</table>

Effective from
<table>
<thead>
<tr>
<th>Prog Year / Month / Year</th>
<th>Contact in School: M Coles (<a href="mailto:mcoles@bournemouth.ac.uk">mcoles@bournemouth.ac.uk</a>)</th>
<th>Date approved: 4.7.14</th>
<th>Programme Specification version no.: v2.11</th>
<th>Placement: a minimum of 30 weeks Core for FTSW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yr. 1</td>
<td>September 2016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr. 2</td>
<td>September 2017</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr. 3</td>
<td>September 2018/19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr. 4</td>
<td>September 2019/20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Name of Professional, Statutory or Regulatory Body (if appropriate): BCS (British Computer Society)
15.3 PROGRAMME PROFILE for BSc (Hons) COMPUTER NETWORKS

<table>
<thead>
<tr>
<th>Originating Institution(s):</th>
<th>Framework Title (in full): Computing Undergraduate Framework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bournemouth University</td>
<td>Programme Award and Title: BSc (Hons) Computer Networks</td>
</tr>
<tr>
<td>School</td>
<td>Framework Title (in full): Computing Undergraduate Framework</td>
</tr>
<tr>
<td>Design, Engineering &amp;</td>
<td>Programme Award and Title: BSc (Hons) Computer Networks</td>
</tr>
<tr>
<td>Computing</td>
<td>Framework Title (in full): Computing Undergraduate Framework</td>
</tr>
<tr>
<td>Partner: N/A</td>
<td>Framework Title (in full): Computing Undergraduate Framework</td>
</tr>
<tr>
<td>Place(s) of Delivery:</td>
<td>Framework Title (in full): Computing Undergraduate Framework</td>
</tr>
<tr>
<td>Bournemouth University</td>
<td>Framework Title (in full): Computing Undergraduate Framework</td>
</tr>
<tr>
<td>Language of delivery (if</td>
<td>Framework Title (in full): Computing Undergraduate Framework</td>
</tr>
<tr>
<td>not English): N/A</td>
<td>Framework Title (in full): Computing Undergraduate Framework</td>
</tr>
<tr>
<td>Programme HESA</td>
<td>Framework Title (in full): Computing Undergraduate Framework</td>
</tr>
<tr>
<td>JACS code: I120</td>
<td>Framework Title (in full): Computing Undergraduate Framework</td>
</tr>
</tbody>
</table>

Interim Award and Titles & required credits:
- Dip HE Computing (240 credits)
- Cert HE Computing (120 credits)

Mode(s) of study:
- FTSW or FT

Expected Length of study:
- FTSW = 4 years
- FT = 3 years

BU Credit Structure & ECTS:
- Level H 120 (60 ECTS)
- Level I 120 (60 ECTS)
- Level C 120 (60 ECTS)

<table>
<thead>
<tr>
<th>Unit version no.</th>
<th>Unit name</th>
<th>HESA JACS Subject Code</th>
<th>CC 1</th>
<th>%</th>
<th>HESA JACS Subject Code</th>
<th>CC2</th>
<th>%</th>
<th>Prog year FT</th>
<th>Prog year PT</th>
<th>Core / option</th>
<th>No of credits</th>
<th>Level (C/4, I/5, H/6, PgC, PgD, M/7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE1113C-2</td>
<td>Business &amp; Professional Issues</td>
<td>N100</td>
<td>133</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>C</td>
<td>20</td>
<td>C/4</td>
<td>50 50</td>
</tr>
<tr>
<td>CSE1112C-3</td>
<td>Computers &amp; Networks</td>
<td>I120</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>C</td>
<td>20</td>
<td>C/4</td>
<td>50 50</td>
</tr>
<tr>
<td>CSE1085C-2</td>
<td>Programming</td>
<td>I320</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>C</td>
<td>20</td>
<td>C/4</td>
<td>50 50</td>
</tr>
<tr>
<td>CSE1142C-1</td>
<td>Relational Databases</td>
<td>I240</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>C</td>
<td>20</td>
<td>C/4</td>
<td>50 50</td>
</tr>
<tr>
<td>CSE1111C-2</td>
<td>Systems Analysis &amp; Design</td>
<td>I230</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>C</td>
<td>20</td>
<td>C/4</td>
<td>30 70</td>
</tr>
<tr>
<td>CSE1143C-1</td>
<td>User-centred Web Development</td>
<td>I160</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>C</td>
<td>20</td>
<td>C/4</td>
<td>50 50</td>
</tr>
<tr>
<td>CSE1171I-1</td>
<td>Application Programming</td>
<td>I320</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>O</td>
<td>20</td>
<td>I/5</td>
<td>50 50</td>
</tr>
<tr>
<td>CSE1177I-1</td>
<td>Network &amp; Software Engineering</td>
<td>I120</td>
<td>121</td>
<td>50</td>
<td>I300</td>
<td>121</td>
<td>50</td>
<td>2</td>
<td>C</td>
<td>20</td>
<td>I/5</td>
<td>50 50</td>
</tr>
<tr>
<td>CSE1117I-2</td>
<td>Data Management</td>
<td>I260</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>O</td>
<td>20</td>
<td>I/5</td>
<td>50 50</td>
</tr>
<tr>
<td>CSE1173I-1</td>
<td>Infrastructure Strategy</td>
<td>I110</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>C</td>
<td>20</td>
<td>I/5</td>
<td>100</td>
</tr>
<tr>
<td>CSE1174I-1</td>
<td>Project Management &amp; Teamworking</td>
<td>N213</td>
<td>133</td>
<td>50</td>
<td>I100</td>
<td>121</td>
<td>50</td>
<td>2</td>
<td>C</td>
<td>20</td>
<td>I/5</td>
<td>100</td>
</tr>
<tr>
<td>CSE1119I-2</td>
<td>Systems Design</td>
<td>I220</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>C</td>
<td>20</td>
<td>I/5</td>
<td>50 50</td>
</tr>
<tr>
<td>CSE1175I-1</td>
<td>Web Programming</td>
<td>I320</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>O</td>
<td>20</td>
<td>I/5</td>
<td>50 50</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>ECTS</td>
<td>GPA</td>
<td>Placement</td>
<td>Notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--------------------------------------------------</td>
<td>---------</td>
<td>------</td>
<td>-----</td>
<td>-----------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1176I-2</td>
<td>Web Technology Integration</td>
<td>I160</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1084H-2</td>
<td>Advanced Development</td>
<td>I320</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEE1033H-2</td>
<td>Advanced Networks</td>
<td>I120</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MGT1126H-2</td>
<td>Business Development &amp; Enterprise</td>
<td>I161</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1083H-2</td>
<td>Business Processes &amp; Requirements</td>
<td>I230</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW v1</td>
<td>Data Mining</td>
<td>I260</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW v1</td>
<td>Machine Intelligence for Business Decision Making</td>
<td>I270</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW v2</td>
<td>Human Factors in Computing Systems</td>
<td>I140</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1025H-2</td>
<td>Individual Project</td>
<td>I100</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1098H-2</td>
<td>Information Assurance</td>
<td>I990</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1082H-2</td>
<td>Management in Computing</td>
<td>N213</td>
<td>133</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW v1</td>
<td>Ubiquitous &amp; Mobile Computing</td>
<td>I100</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEE1081H-4</td>
<td>Network Configuration Management</td>
<td>I120</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW V1</td>
<td>Security by Design</td>
<td>I990</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1086H-2</td>
<td>Software Quality &amp; Testing</td>
<td>I300</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1087H-2</td>
<td>Software Systems Modelling</td>
<td>I310</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW v1</td>
<td>Web Information Systems</td>
<td>I160</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Effective from Prog Year / Month / Year:  
Yr. 1: Sept 2016  
Yr. 2: Sept 2017  
Yr. 3: Sept 2018/19  
Yr. 4: Sept 2019/20  

Contact in School: M Coles (mcoles@bournemouth.ac.uk)  
Date approved: 4.7.14  
Programme Specification version no.: v2.11  
Placement: a minimum of 30 weeks Core for FTSW  

Name of Professional, Statutory or Regulatory Body (if appropriate): BCS (British Computer Society)  
Diploma Supplement Statement regarding PRSB accreditation: 
## 15.4 PROGRAMME PROFILE for BSc (Hons) COMPUTING

<table>
<thead>
<tr>
<th>Originating Institution(s):</th>
<th>Bournemouth University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Place(s) of Delivery:</td>
<td>Bournemouth University</td>
</tr>
<tr>
<td>School:</td>
<td>Design, Engineering &amp;</td>
</tr>
<tr>
<td></td>
<td>Computing</td>
</tr>
<tr>
<td>Partner:</td>
<td>N/A</td>
</tr>
<tr>
<td>Framework Title (in full):</td>
<td>Computing Undergraduate Framework</td>
</tr>
<tr>
<td>Programme Award and Title:</td>
<td>BSc (Hons) Computing</td>
</tr>
<tr>
<td>Interim Award and Titles &amp; required credits:</td>
<td>Dip HE Computing (240 credits)</td>
</tr>
<tr>
<td></td>
<td>Cert HE Computing (120 credits)</td>
</tr>
<tr>
<td>Mode(s) of study:</td>
<td>FTSW or FT</td>
</tr>
<tr>
<td>Expected Length of study:</td>
<td>FTSW = 4 years</td>
</tr>
<tr>
<td></td>
<td>FT = 3 years</td>
</tr>
<tr>
<td>BU Credit Structure &amp; ECTS:</td>
<td>Level H 120 (60 ECTS)</td>
</tr>
<tr>
<td></td>
<td>Level I 120 (60 ECTS)</td>
</tr>
<tr>
<td></td>
<td>Level C 120 (60 ECTS)</td>
</tr>
</tbody>
</table>

### Unit Identification, Cost Centre(s), Unit Details, Assessment Regs:

<table>
<thead>
<tr>
<th>Unit version no.</th>
<th>Unit name</th>
<th>HESA JACS Subject Code</th>
<th>CC 1</th>
<th>%</th>
<th>HESA JACS Subject Code</th>
<th>CC2</th>
<th>%</th>
<th>Prog year FT</th>
<th>Prog year PT</th>
<th>Core / option</th>
<th>No of credits</th>
<th>Level (C/4,I/5, H/6, PgC, PgD, M/7)</th>
<th>Assessment Element Weightings</th>
<th>Exam 1</th>
<th>C/Work 1</th>
<th>C/Work 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE1113C-2</td>
<td>Business &amp; Professional Issues</td>
<td>N100</td>
<td>133</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>C</td>
<td>20</td>
<td>C/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1112C-3</td>
<td>Computers &amp; Networks</td>
<td>I120</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>C</td>
<td>20</td>
<td>C/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1085C-2</td>
<td>Programming</td>
<td>I320</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>C</td>
<td>20</td>
<td>C/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1142C-1</td>
<td>Relational Databases</td>
<td>I240</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>C</td>
<td>20</td>
<td>C/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1111C-2</td>
<td>Systems Analysis &amp; Design</td>
<td>I230</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>C</td>
<td>20</td>
<td>C/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1143C-1</td>
<td>User-centred Web Development</td>
<td>I160</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>C</td>
<td>20</td>
<td>C/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1171I-1</td>
<td>Application Programming</td>
<td>I320</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>O</td>
<td>20</td>
<td>I/5</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1177I-1</td>
<td>Network &amp; Software Engineering</td>
<td>I120</td>
<td>121</td>
<td>50</td>
<td>H6</td>
<td>20</td>
<td>50</td>
<td>2</td>
<td>C</td>
<td>20</td>
<td>I/5</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1111I-2</td>
<td>Data Management</td>
<td>I260</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>O</td>
<td>20</td>
<td>I/5</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1173I-1</td>
<td>Infrastructure Strategy</td>
<td>I110</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>C</td>
<td>20</td>
<td>I/5</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1174I-1</td>
<td>Project Management &amp; Teamworking</td>
<td>N213</td>
<td>133</td>
<td>50</td>
<td>I100</td>
<td>121</td>
<td>50</td>
<td>2</td>
<td>C</td>
<td>20</td>
<td>I/5</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1119I-2</td>
<td>Systems Design</td>
<td>I220</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>C</td>
<td>20</td>
<td>I/5</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1175I-1</td>
<td>Web Programming</td>
<td>I320</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>O</td>
<td>20</td>
<td>I/5</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Code</td>
<td>Year</td>
<td>Credits</td>
<td>Type</td>
<td>Mode</td>
<td>ECTS</td>
<td>Notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------------------------------------</td>
<td>------</td>
<td>------</td>
<td>---------</td>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1176I-2</td>
<td>Web Technology Integration</td>
<td>I160</td>
<td>121</td>
<td>100</td>
<td></td>
<td>O</td>
<td>2</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1084H-2</td>
<td>Advanced Development</td>
<td>I320</td>
<td>121</td>
<td>100</td>
<td></td>
<td>O (FT 3)</td>
<td>20</td>
<td>H/6</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEE1033H-2</td>
<td>Advanced Networks</td>
<td>I120</td>
<td>121</td>
<td>100</td>
<td></td>
<td>O (FT 3)</td>
<td>20</td>
<td>H/6</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MGT1126H-2</td>
<td>Business Development &amp; Enterprise</td>
<td>I161</td>
<td>121</td>
<td>100</td>
<td></td>
<td>O (FT 3)</td>
<td>20</td>
<td>H/6</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1083H-2</td>
<td>Business Processes &amp; Requirements</td>
<td>I230</td>
<td>121</td>
<td>100</td>
<td></td>
<td>O (FT 3)</td>
<td>20</td>
<td>H/6</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW v1</td>
<td>Data Mining</td>
<td>I260</td>
<td>121</td>
<td>100</td>
<td></td>
<td>O (FT 3)</td>
<td>20</td>
<td>H/6</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW v1</td>
<td>Machine Intelligence for Business Decision Making</td>
<td>I270</td>
<td>121</td>
<td>100</td>
<td></td>
<td>O (FT 3)</td>
<td>20</td>
<td>H/6</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW v2</td>
<td>Human Factors in Computing Systems</td>
<td>I140</td>
<td>121</td>
<td>100</td>
<td></td>
<td>O (FT 3)</td>
<td>20</td>
<td>H/6</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1025H-2</td>
<td>Individual Project</td>
<td>I100</td>
<td>121</td>
<td>100</td>
<td></td>
<td>C (FT 3)</td>
<td>60</td>
<td>H/6</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1098H-2</td>
<td>Information Assurance</td>
<td>I990</td>
<td>121</td>
<td>100</td>
<td></td>
<td>O (FT 3)</td>
<td>20</td>
<td>H/6</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1082H-2</td>
<td>Management in Computing</td>
<td>N213</td>
<td>133</td>
<td>50</td>
<td>I300</td>
<td>121</td>
<td>50</td>
<td>O (FT 3)</td>
<td>20</td>
<td>H/6</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW v1</td>
<td>Ubiquitous &amp; Mobile Computing</td>
<td>I120</td>
<td>121</td>
<td>100</td>
<td></td>
<td>O (FT 3)</td>
<td>20</td>
<td>H/6</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEE1081H-4</td>
<td>Network Configuration Management</td>
<td>I120</td>
<td>121</td>
<td>100</td>
<td></td>
<td>O (FT 3)</td>
<td>20</td>
<td>H/6</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW V1</td>
<td>Security by Design</td>
<td>I990</td>
<td>121</td>
<td>100</td>
<td></td>
<td>O (FT 3)</td>
<td>20</td>
<td>H/6</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1086H-2</td>
<td>Software Quality &amp; Testing</td>
<td>I300</td>
<td>121</td>
<td>100</td>
<td></td>
<td>O (FT 3)</td>
<td>20</td>
<td>H/6</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1087H-2</td>
<td>Software Systems Modelling</td>
<td>I310</td>
<td>121</td>
<td>100</td>
<td></td>
<td>O (FT 3)</td>
<td>20</td>
<td>H/6</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW v1</td>
<td>Web Information Systems</td>
<td>I160</td>
<td>121</td>
<td>100</td>
<td></td>
<td>O (FT 3)</td>
<td>20</td>
<td>H/6</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Effective from Prog Year / Month / Year: Contact in School: M Coles (mcoles@bournemouth.ac.uk)
Date approved: 4.7.14
Programme Specification version no.: v2.11
Placement: a minimum of 30 weeks Core for FTSW

Yr. 1 | Sept | 2016
Yr. 2 | Sept | 2017
Yr. 3 | Sept | 2018/19
Yr. 4 | Sept | 2019/20

Name of Professional, Statutory or Regulatory Body (if appropriate): BCS (British Computer Society)
Diploma Supplement Statement regarding PRSB accreditation:
## 15.5 PROGRAMME PROFILE for BSc (Hons) SOFTWARE ENGINEERING

**Programme Award and Title:** BSc (Hons) Software Engineering

**Interim Award and Titles & required credits:**
- Dip HE Computing (240 credits)
- Cert HE Computing (120 credits)

**Mode(s) of study:**
- FTSW or FT

**Expected Length of study:**
- FTSW = 4 years
- FT = 3 years

**BU Credit Structure & ECTS:**
- Level H 120 (60 ECTS)
- Level I 120 (60 ECTS)
- Level C 120 (60 ECTS)

### Unit Details

<table>
<thead>
<tr>
<th>Unit version no.</th>
<th>Unit name</th>
<th>HESA JACS Subject Code</th>
<th>CC 1</th>
<th>%</th>
<th>HESA JACS Subject Code</th>
<th>CC2</th>
<th>%</th>
<th>Prog year FT</th>
<th>Prog year PT</th>
<th>Core / option</th>
<th>No of credits</th>
<th>Level (C/4, I/5, H/6, PgC, PgD, M/7)</th>
<th>Assessment Element Weightings</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE1113C-2</td>
<td>Business &amp; Professional Issues</td>
<td>N100</td>
<td>133</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>C</td>
<td>20</td>
<td>C/4</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>CSE1112C-3</td>
<td>Computers &amp; Networks</td>
<td>I120</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>C</td>
<td>20</td>
<td>C/4</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>CSE1108C-2</td>
<td>Programming</td>
<td>I320</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>C</td>
<td>20</td>
<td>C/4</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>CSE1142C-1</td>
<td>Relational Databases</td>
<td>I240</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>C</td>
<td>20</td>
<td>C/4</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>CSE1111C-2</td>
<td>Systems Analysis &amp; Design</td>
<td>I230</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>C</td>
<td>20</td>
<td>C/4</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>CSE1143C-1</td>
<td>User-centred Web Development</td>
<td>I160</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>C</td>
<td>20</td>
<td>C/4</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>CSE1117I-1</td>
<td>Application Programming</td>
<td>I320</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>O</td>
<td>20</td>
<td>I/5</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>CSE1177I-1</td>
<td>Network &amp; Software Engineering</td>
<td>I120</td>
<td>121</td>
<td>50</td>
<td>H6</td>
<td>20</td>
<td>50</td>
<td>2</td>
<td>O</td>
<td>20</td>
<td>I/5</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>CSE1117I-2</td>
<td>Data Management</td>
<td>I260</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>O</td>
<td>20</td>
<td>I/5</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>CSE1173I-1</td>
<td>Infrastructure Strategy</td>
<td>I110</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>O</td>
<td>20</td>
<td>I/5</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>CSE1174I-1</td>
<td>Project Management &amp; Teamworking</td>
<td>N213</td>
<td>133</td>
<td>50</td>
<td>I100</td>
<td>121</td>
<td>50</td>
<td>2</td>
<td>C</td>
<td>20</td>
<td>I/5</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>CSE1119I-2</td>
<td>Systems Design</td>
<td>I220</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>C</td>
<td>20</td>
<td>I/5</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>CSE1175I-1</td>
<td>Web Programming</td>
<td>I320</td>
<td>121</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>O</td>
<td>20</td>
<td>I/5</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Contact Hours</td>
<td>Contact Hours</td>
<td>%C</td>
<td>%P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------------------------------</td>
<td>---------</td>
<td>---------------</td>
<td>---------------</td>
<td>----</td>
<td>----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1176I-2</td>
<td>Web Technology Integration</td>
<td>I160</td>
<td>121</td>
<td>100</td>
<td>2</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1084H-2</td>
<td>Advanced Development</td>
<td>I320</td>
<td>121</td>
<td>100</td>
<td>4</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEE1033H-2</td>
<td>Advanced Networks</td>
<td>I120</td>
<td>121</td>
<td>100</td>
<td>4</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MGT1126H-2</td>
<td>Business Development &amp; Enterprise</td>
<td>I161</td>
<td>121</td>
<td>100</td>
<td>4</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1083H-2</td>
<td>Business Processes &amp; Requirements</td>
<td>I230</td>
<td>121</td>
<td>100</td>
<td>4</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW v1</td>
<td>Data Mining</td>
<td>I260</td>
<td>121</td>
<td>100</td>
<td>4</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW v1</td>
<td>Machine Intelligence for Business Decision Making</td>
<td>I270</td>
<td>121</td>
<td>100</td>
<td>4</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW v2</td>
<td>Human Factors in Computing Systems</td>
<td>I140</td>
<td>121</td>
<td>100</td>
<td>4</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1025H-2</td>
<td>Individual Project</td>
<td>I100</td>
<td>121</td>
<td>100</td>
<td>4</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1098H-2</td>
<td>Information Assurance</td>
<td>I990</td>
<td>121</td>
<td>100</td>
<td>4</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1082H-2</td>
<td>Management in Computing</td>
<td>N213</td>
<td>133</td>
<td>50</td>
<td>I300</td>
<td>121</td>
<td>50</td>
<td>4</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW v1</td>
<td>Ubiquitous &amp; Mobile Computing</td>
<td>I120</td>
<td>121</td>
<td>100</td>
<td>4</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEE1081H-4</td>
<td>Network Configuration Management</td>
<td>I990</td>
<td>121</td>
<td>100</td>
<td>4</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW v1</td>
<td>Security by Design</td>
<td>I300</td>
<td>121</td>
<td>100</td>
<td>4</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1086H-2</td>
<td>Software Quality &amp; Testing</td>
<td>I310</td>
<td>121</td>
<td>100</td>
<td>4</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE1087H-2</td>
<td>Software Systems Modelling</td>
<td>I160</td>
<td>121</td>
<td>100</td>
<td>4</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Effective from Prog Year / Month / Year: Yr.1 Sept 2016, Yr.2 Sept 2017, Yr.3 Sept 2018/19, Yr.4 Sept 2019/20

Contact in School: M Coles (mcoles@bournemouth.ac.uk)

Date approved: 4.7.14

Programme Specification version no.: v2.11

Placement: a minimum of 30 weeks Core for FTSW

BCS (British Computer Society)
### 15.6 PROGRAMME PROFILE for BSc (Hons) Forensic Computing & Security

**Originating Institution(s):** Bournemouth University  
**School:** Design, Engineering & Computing  
**Partner:** N/A

**Framework Title (in full):** Computing Undergraduate Framework

**Programme Award and Title:** BSc (Hons) Forensic Computing & Security

**Place(s) of Delivery:** Bournemouth University

**Interim Award and Titles & required credits:**  
- Dip HE Forensic Computing & Security (240 credits)  
- Cert HE Computing (120 credits)

**Mode(s) of study:** FTSW or FT  
**Expected Length of study:**  
- FTSW = 4 years  
- FT = 3 years

**BU Credit Structure & ECTS:**  
- Level H 120 (60 ECTS)  
- Level I 120 (60 ECTS)  
- Level C 120 (60 ECTS)

**Language of delivery:** N/A

<table>
<thead>
<tr>
<th>Unit version no.</th>
<th>Unit name</th>
<th>Cost Centre(s)</th>
<th>Unit Details</th>
<th>Assessment Regs: ASR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HESA JACS</td>
<td>Core / option</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subject Code</td>
<td>No of credits</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CC 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HESA JACS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subject Code</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CC2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prog year FT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prog year PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Core / option</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No of credits</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Level (C/4,I/5, H/6, PgC, PgD, M/7)</td>
<td>Assessment Element Weightings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exam 1</td>
<td>C/Work 1</td>
</tr>
<tr>
<td>CSE1113C-2</td>
<td>Business &amp; Professional Issues</td>
<td>N100</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>CSE1112C-3</td>
<td>Computers &amp; Networks</td>
<td>I120</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>CSE1085C-2</td>
<td>Programming</td>
<td>I320</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>CSE1142C-1</td>
<td>Relational Databases</td>
<td>I240</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>CSE1111C-2</td>
<td>Systems Analysis &amp; Design</td>
<td>I230</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>CSE1143C-1</td>
<td>User-centred Web Development</td>
<td>I160</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>CSE1171I-1</td>
<td>Application Programming</td>
<td>I320</td>
<td>2</td>
<td>O</td>
</tr>
<tr>
<td>EEE1119I-2</td>
<td>Digital Forensics</td>
<td>I990</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>CSE1117I-2</td>
<td>Data Management</td>
<td>I260</td>
<td>2</td>
<td>O</td>
</tr>
<tr>
<td>EEE1120I-2</td>
<td>Ethical Hacking &amp; Countermeasures</td>
<td>I900</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>CSE1173I-1</td>
<td>Infrastructure Strategy</td>
<td>I110</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>CSE1174I-1</td>
<td>Project Management &amp; Teamworking</td>
<td>N213</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N100</td>
<td>50</td>
<td>I100</td>
</tr>
<tr>
<td>CSE1119I-2</td>
<td>Systems Design</td>
<td>I220</td>
<td>2</td>
<td>C</td>
</tr>
</tbody>
</table>


<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>ECTS</th>
<th>Programme Type</th>
<th>Contact Hours</th>
<th>Assessment</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE1175I-1</td>
<td>Web Programming</td>
<td>2</td>
<td>O</td>
<td>1/5</td>
<td>20</td>
<td>I/5</td>
<td>50</td>
</tr>
<tr>
<td>CSE1176I-2</td>
<td>Web Technology Integration</td>
<td>2</td>
<td>O</td>
<td>1/5</td>
<td>20</td>
<td>I/5</td>
<td>50</td>
</tr>
<tr>
<td>CSE1084H-2</td>
<td>Advanced Development</td>
<td>4 (FT 3)</td>
<td>O</td>
<td>20</td>
<td>I/5</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>EEE1033H-2</td>
<td>Advanced Networks</td>
<td>4 (FT 3)</td>
<td>O</td>
<td>20</td>
<td>I/5</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>MGT1126H-2</td>
<td>Business Development &amp; Enterprise</td>
<td>4 (FT 3)</td>
<td>O</td>
<td>20</td>
<td>I/5</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>CSE1083H-2</td>
<td>Business Processes &amp; Requirements</td>
<td>4 (FT 3)</td>
<td>O</td>
<td>20</td>
<td>I/5</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>NEW v1</td>
<td>Security by Design</td>
<td>4 (FT 3)</td>
<td>C</td>
<td>20</td>
<td>I/5</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>NEW v1</td>
<td>Data Mining</td>
<td>4 (FT 3)</td>
<td>O</td>
<td>20</td>
<td>I/5</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>NEW v1</td>
<td>Machine Intelligence for Business Decision Making</td>
<td>4 (FT 3)</td>
<td>O</td>
<td>20</td>
<td>I/5</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>NEW v2</td>
<td>Human Factors in Computing Systems</td>
<td>4 (FT 3)</td>
<td>O</td>
<td>20</td>
<td>I/5</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>CSE1025H-2</td>
<td>Individual Project</td>
<td>4 (FT 3)</td>
<td>C</td>
<td>60</td>
<td>I/5</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>CSE1098H-2</td>
<td>Information Assurance</td>
<td>4 (FT 3)</td>
<td>C</td>
<td>20</td>
<td>I/5</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>CSE1082H-2</td>
<td>Management in Computing</td>
<td>4 (FT 3)</td>
<td>O</td>
<td>20</td>
<td>I/5</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>NEW v1</td>
<td>Ubiquitous &amp; Mobile Computing</td>
<td>4 (FT 3)</td>
<td>O</td>
<td>20</td>
<td>I/5</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>EEE1081H-4</td>
<td>Network Configuration Management</td>
<td>4 (FT 3)</td>
<td>O</td>
<td>20</td>
<td>I/5</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>CSE1086H-2</td>
<td>Software Quality &amp; Testing</td>
<td>4 (FT 3)</td>
<td>O</td>
<td>20</td>
<td>I/5</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>CSE1087H-2</td>
<td>Software Systems Modelling</td>
<td>4 (FT 3)</td>
<td>O</td>
<td>20</td>
<td>I/5</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>NEW v1</td>
<td>Web Information Systems</td>
<td>4 (FT 3)</td>
<td>O</td>
<td>20</td>
<td>I/5</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

**Effective from**

<table>
<thead>
<tr>
<th>Prog Year / Month / Year</th>
<th>Contact in School:</th>
<th>Date approved</th>
<th>Programme Specification version no.</th>
<th>Placement: a minimum of 30 weeks Core for FTSW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yr. 1</td>
<td>M Coles (<a href="mailto:mcoles@bournemouth.ac.uk">mcoles@bournemouth.ac.uk</a>)</td>
<td>4.7.14</td>
<td>v2.11</td>
<td>Diploma Supplement Statement regarding PRSB accreditation:</td>
</tr>
<tr>
<td>Yr. 2</td>
<td></td>
<td></td>
<td></td>
<td>BCS (British Computer Society</td>
</tr>
<tr>
<td>Yr. 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr. 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>